COMPONENT BASED SOFTWARE ENGINEERING:
BENEFITS AND RISKS

Noopur Goel

ABSTRACT

Comtponent Based Software development (CBSD) is an approach to develop a software system with the help
of reusable software components. It brings certain benefits such as increased quality, productivity and
reduced time to market. Yet, like the traditional single system software, CBSD has some tisks also. This
paper investigates few risks associated with the CBSD process.

Keywords: Components, Component based Software development, Risks.

1. INTRODUCTION

The software systems are growing in size and complexity, and the customers are
demanding more dependable software that is delivered and deployed more quickly.
This leads to the practice of reuse rather than reimplementing the software components.
Components are higher level of abstractions than objects and are defined by their
objects. All implementation details are hidden from other components. Component-
based software engineering (CBSE) is the process of defining implementing and
integrating or composing loosely coupled independent components into systems [1].
It consists of two parallel activities [2]:

i. Domain Engineering: investigates an application domain with the definite
purpose of finding functional, behavioral and data components that are
candidates for reuse. These components are placed for reuse libraries.

ii. Component-Based Development: considers requirements from the customer,
select an appropriate architectural style to meet the objectives of the system to be
built, and then selects, qualifies, adapt and integrates the components to form a
subsystem and the application as a whole.

Essentials of CBSE [1] are:

* Associate Professor, Department of Computer Aplications, VBS Purvanchal University Jaunpur,
U.P., India, Email: noopurtl1@gmail.com

e r
Vol. 1V, No. 2, July 2014 ¢ ' *S

68 Computing Trendz

i. Independent components which are completely specified by their interfaces.
. Component standards that facilitate the integration of components.
iii. Middleware that provides software support for component integration.
iv. A development process that is geared to CBSE.

Practitioners identify the following key CBSD advantages in future software
development efforts [3][4]:

1. Reduced lead time. Building complete business applications from an existing
pool of components;

ii. Leveraged costs developing individual components. Reusing them in multiple
applications;
iii. Enhanced quality. Components are reused and tested in many different

applications; and

iv. Maintenance of component-based applications. Easy replacement of obsolete
components with new enhanced ones.

v. Effective management of complexity
vi. Increased productivity
vii. Greater degree of consistency

viii. Wider range of usability

2. RISKS IN SOFTWARE DEVELOPMENT

Though risks in a project are specific to the project, some are common and they can
happen in any Software development process. Listing these risks would be good for
identifying these risks in a particular project. Based on surveys of experienced project
managers, Boehm has produced a list of the top ten risk items likely to compromise
with the success of a software project:

1. Personnel shortfall: this involves just having fewer people than necessary or not
having people with specific skills that a project might require.

2. Unrealistic schedule and budget: this risk happens very frequently due to
business-related and other reasons. It is very common that high-level management
imposes a schedule for a software project that is not based on the characteristics
of the project and is this could be unrealistic. This risk applies to all projects.

%

SIV

| .
VoA AN

Vol. 1V, No. 2, July 2014

N
»r

4
s 1

Component based Software Engineering: Benefits and Risks 69

Project-specific risks in cost and schedule occur due to underestimating the value
of some of the cost drivers.

3. Developing the wrong software function: projects run the risk of developing the
wrong software if the requirements analysis is not done properly and if
development begins too early.

4. Developing the wrong user interface: this item is also related to requirements.
Often improper user interface may be developed. This requires expensive rework
of the user interface later or the software benefits are not obtained because users
are reluctant to use it.

5. Gold plating: gold plating refers to adding features in the software that are only
marginally useful. This adds unnecessary risk to the project because gold plating
consumes resources and time with little return. ’

6. Continuing stream of requirements changes: some requirement changes are to
be expected in any project, but sometimes frequent changes are requested, which
often reflect the fact that the client has not yet understood or settled on its own
requirements.

7. Shortfalls in externally furnished components: if the project depends on externally
available components - either to be provided by the client or to be procured as an
off-the-shelf component - the project runs some risks.

8. Shortfalls in externally performed task: this type of risk is related to reuse and is
described in detail later in the paper.

9. Real-time performance shortfall: if the project behaves like the requirements
specified in requirement specification but not within the limits of real-time
requirements, the project would fail.

10. Straining éomputer science capabilities: If a project relies on technology that is
not well developed, it may fail. This is a risk due to straining the computer
capabilities.

3. RISKS IN CBSD

CBSE has two parallel development processes as mentioned above: Domain
Engineering and Component-Based Development. It will not be out of place to
mention again that some other types of risks are there in a CBSD. Each of these two
processes can be performed independently of each other with proper feedback from

S

AN

v

4

.

Vol.1V, No. 2, July 2014

<r
Bk
»r
—h

A S

%

70 Computing Trendz

the second process to the first process. Risks are associated with both processes and
some risks are there which are transferred from one process to another. In spite of a
wide range of benefits associated with Component-Based Software Development
(CBSD), some risks and challenges also come along with it [4].

i. Time and effort required for development of components: In comparison to
building a unit for a specific purpose, it requires three to five times the effort to
build a reusable component. Many practitioners have witnessed that the reusable
component pays off after its fifth reuse. A reusable component, during its launch,
is exposed to changes and after its few reuses comes to a stable state.

ii. Unclear and ambiguous requirements: Requirement management, an important
part of the development process, has the main aim of defining complete and
consistent requirements of component. In the case of reusable components, since
it covers a domain of similar applications, some of the requirements (functional
and non-functional) are not known in advance.

iii. Conflict between usability and reusability: It requires a component to be more
general, scalable and adaptable to become it widely reusable. This leads to a
more complex (thus more complicated to use) and more demanding (thus more
expensive to use) of computing resources.

iv. Component maintenance costs: The component maintenance costs can be very
high since it must adhere to various requirements of different applications running
in different environments, with different level of maintenance support as
compared to a single system maintenance costs.

v. Reliability and sensitivity to changes: The components and applications are having
different life cycles and different kinds of requirements. There is a risk that a
component may not satisfy some applications requirements or some component
characteristics may be obscured and not known to application developers. So, if
a change is introduced at the application level there is a risk of application failure.

4. CONCLUSION

It is well known that the success of any project depends on the decisions taken during
the various activities during the software development process. In the same way, the
success of CBSD also depends on the two independent development processes involved
in CBSD. The listing of these risks would help the developers and users of the
components and software as a whole to identify and prioritize the risks involved in

’ Al

SIVIS

| .
vV A AN

Vol. 1V, No. 2, July 2014

ok
»r

4
s |

Component based Software Engineering: Benefits and Risks 71

the project. This would further be beneficial to define the ways to address those risks.

REFERENCES:

1.

Vol.1V, No. 2, July 2014

lan Sommerville, Software Engineering, 9th Edition, Pearson Education India,
India, ISBN 978-81-317-6216-5, 2011

Pressman R., Software Engineering: A Practitioner Approach, 6th Edition,
McGraw Hill: New York, NY 10020. ISBN 007-124083-7, TMH, 847-857. 2001

Padmal Vitharana, Risks and Challenges of Component-Based Software
Development, Communications of the ACM August 2003/Vol. 46, No. 8 pp.
67-72.

Ivica Crnkovic, Component-based Software Engineering-New Challenges in
Software Development, Software Focus, John Wiley & Sons Ltd. Volume 2, Issue
4, 2002, pp. 127-133.

Barry W. Boehm, Software Risk Management: Principles and Practices, IEEE
Software, vol. 8, No. 1, 1991, pp. 32-41.

:7’ Al
oh A
: B
r g
fL’L

