
BrNsrIrs ANP Rlsrs

Noopur Goel

ABSTRACT

Contpotten.tBaseclso.ffipnyg,|..1gltlptltillllCB.(Dj15lllil1||1rO|1C]1|;t1]g1s!pTlnsot'fuonresystenttoiththehelp

of rerrsable soffruare conrponeris. It brutgs cirtliul !,tnLfits stt./l ,t-s tttcrrrtsetl tltLttlittl, productiaity and

.redt.rced tirue to tilnrket. Yet, tike tlrc tra,litiortrtl sntgle -iy-sfLttr srrifit'ilrr'. CB-sD /ras sone risks also' This

p ap e r inu e s t i g at e s .fe zu r i sk s {1 s s o c i tt t e tl iL' i tl t l/ rc C B -S
D p r'0 cd s s

Keywords: Components, Component based Softrr-are cler-elopment, Risks'

1. INTRODUCTION

The software systems are grolr-ing in size and compleriti', and the customers are

demanding more dependable software that is delir.ered and deploved more quickiv'

This leads to the practice of reuse rather than reintplenrcnting the softvvare components'

Components are higher level of abstractions than objects and are defined bv their

objects. All implementation details are hidden from other components. Component-

based software engineering (CBSE) is the plocess of defining implementing and

integrating or composing looselr, coupled independent components into svstems [1]'

It consists of two parailel activities [2]:

i. Domain Engineering: investigates an application domain with the definite

purpose of finding functional, behavioral and data components that are

candidates for reuse. These components are placed for reuse libraries.

ii. Component-Based Deveiopment: consiclers requirenrents from the customer,

select an appropriate architecfural str-1e to meet the 3fjechr-es of the sYstem to be

built, and then selects, qualifies, adapt ancl urtegrates the components to form a

subsystem and the application as a u-ho1e'

Essentials of CBSE [1] are:

* Associate Professor, Department of Con'rputer -\lrhcahons, \tsS Pun'anchal University Jaunpur,

U.P., India, Email: noopurtll@gmail.com

Vol. W,No.2,luly2014 i:.tl i)

l
CoupoNENT Besnp Sorrwenn ENcINEERING:

68

i' Lrdependent components which are compretery specified by

ComputingTrendz

their interfaces.

iv.

V,

vi.

vii.

viii.

ii. Component standards that facilitate the integration of components.
iii. Middleware that provides software support for component integration.
iv. A development process that is geared to CBSE.

Practitioners identify the following key CBSD advantages in future software
development efforts [3][a]:

i' Reduced lead time. Building compiete business applications from an existing
pool of components;

ii' Leveraged costs developing indiviclual components. Reusing them in multiple
applications;

iii' Enhanced qualitv. Components are reused and tested in many different
applications; and

Maintenance of component-basecl appiications. Easy replacement of obsolete
components with new enhanced ones.

Effective management of complexi$r

Increased productivi$'

Creater degree of consistencr.

Wider range of usabilitv

2. RISKS IN SOFTWARE DEVELOPMENT
Though risks in a project are specific to the project, some are conunon and they can
happen in any Software development process. Listing these risks would be good for
identifying these risks in a particular project. Basecl or', ,.rrr"r, of experienceJ project
managers/ Boehm has produced a list of the top ten risk items likeiv to compromise
with the success of a software project:

1' Personnel shortfall: this involves just having fewer people than necessary or not
having peopie with specific skins that a project might require.

2. unrealistic schedule and butlget: this risk happens ver\r frequently due to
business-related and other reasons. It is very corunon that high-t"r"t management
imposes a schedule for a software project that is not basecl on the characteristics
of the project and is this could be unrealistic. This risk applies to all projects.

Vol.IV, No. 2,July2014i:.\t i"-."

Component based Software Engineering: Benefits and Risks

Project-specific risks in cost ancl scheclule occur due to underestimating the value
of some of the cost drivers.

Developing the wrong software function: projects mn the risk of developing the
wrong software if the requirements analvsis is not done properly and if
development begins too early.

Developing the wrong user ilterface: this item is also related to requirements.
Often improper user interface mav be developed. This requires expensive rer,vork
of the user interface later or the softn,are benefits are not obtained because users
are reluctant to use it.

Gold plating: gold plating refers to adding features in the software that are only
marginallv useful. This adds unnecessary risk to the project because gold plating
consumes resources and time with little refurn.

6. Continuing stream of requirements changes: some requirement changes are to
be expected in any project, but sornetimes frequent changes are requested, which
often reflect the fact that the client has not vet understood or settled on its own
requirements.

7 . Shortfalls in externally furnished components: if the project depends on externally
available components - either to be provided bt, the client or to be procured as an
off-the-shelf component - the project runs some risks.

8. Shortfalls in externally performed task: this type of risk is related to reuse and is
described in detail later in the paper.

9. Real-time performance shortfall: if the project behaves like the requirements
specified in requirement specification but not within the limits of real-time
requirements, the project would fail.

10. Straining computer science capabilities: If a project relies on technology that is
not well developed, it may fail. This is a risk due to straining the computer
capabilities.

3. RISKS IN CBSD

CBSE has two parallel development processes as mentioned above: Domain
Engineering and Component-Based Development. it i,r'ill not be out of place to
mention again that some other tvpes of risks are there in a CBSD. Each of these two
processes can be performed independenth- of each other r,r'ith proper feedback from

Vol. fV,No. 2,1u1y2014

69

J.

4.

i:fr i)

70 ComputingTrendz

the second process to the first process. Risks are associated with both processes ancl
some risks are there which are transferred from one process to another. In spite of a

wide range of benefits associated with Component-Based Software Development
(CBSD), some risks and challenges also come along w,ith it [1].

i. Time and effort required for development of components; In comparison to
building a unit for a specific purpose, it requires three to fir-e times the effort tc,

build a reusable component. Many practitioners have rt itnessed that the reusable
component pays off after its fifth reuse. A reusable component, during its launch,
is exposed to changes and after its few reuses cofires to a stalrie state.

ii. Unclear and ambiguous requirements: Requirement management, an important
part of the development process, has the main aim of defrning complete ancl
consistent requirements of component. In the case of reusable components, since
it covers a domain of similar applications, some of the requirements (functional
and non-functional) are not known in advance.

iii. Con{lict between usability and reusability: It requires a Lomponent to be more
general, scalable and adaptable to become it u'icleh- reusable. This leads to a

more complex (thus more complicated to use) ancl rnore elemanding (thus more
expensive to use) of computing resources.

iv. Component maintenance costs: The compone.nt n-Larntenance costs can be ven-
high since it must adhere to rzarious requirements oi rlrtf erent applications running
in different environments, with different ler el oi n-Laintenance support as

compared to a single system mailtenance costs.

v. Reliability and sensitivity to changes: The cornponents arcl applications are having
different life cycles and different kinds of requiremer-rts. There is a risk that a

component may not satisfy some applicatior-rs requirements or some component
characteristics may be obscured and not knorr-n to application developers. So, d
a change is introduced at the application ler,e1 there is a rrsk of application failure.

4. CONCLUSION

It is well known that the success of any project depencls on the decisions taken during
the various activities during the software development process. In the same way, the
success of CBSD also depends on the two indepenclent cler.elopment processes involved
in CBSD. The listing of these risks would help the clevelopers and users of the
components and softw'are as a whole to identriy and priorittze the risks involved in

Vol. IV, No. 2, iuly 201-1*:.fl i)

2.

,f.

Componentbased Software Engineering: Benefits and Risks

the project. This would further be beneficial to define the ways to address those risks.

REFERENCES:

1. Ian Sommerville, Software Engineering,gth Edition, Pearson Education India,

India, ISBN 978-81,-317 -62L6-5, 241'1.

Pressman R., Software Engineering: A Practitioner Approach, 6th Edition"

McGraw Hill: New York, NY 10020. ISBN 007-124083-7, TMH, 847-857. 2001'

Padmal Vitharana, Risks and Challenges of Component-Based Software
Development, Communications of the ACM August 2003/YoL46, No. 8 pp.

67-72.

Ivica Crnkovic, Component-based Software Engineering-New Challenges in
Software Development, Software Focus, John Wiley & Sons Ltd. Volume 2, Issue

4,2002, pp. 127-133.

5. Barry W. Boehm, Software Risk Management Principles and Practices, IEEE

Software, voI. 8, No. 1, 1991,, pp.32-41..

o

4.

Vol. IV, No. 2, July 2014 !: tvl >i

