
Agent Mediated Code Comprehension: A Cognitive Challenge

Ram Gopal Gupta
Research Scholar, Uttarakhand Technical University, Dehradun, Uttarakhand, India

Email:rgmail@rediffmail.com

Bireshwar Dass Mazumdar
Associate Professor, Institute of Engineering & Rural Technology, Allahabad, U.P., India

Kuldeep Yadav
Associate Professor, College of Engineering, Roorkee, Uttarakhand, India

Abstract

The rapidly changing needs and opportunities of today's global software market require unprecedented
levels of code comprehension to integrate diverse information systems to share knowledge and collaborate
among organizations. The combination of code comprehension with software agents not only provides a
promising computing paradigm for efficient agent mediated code comprehension service for selection and
integration of inter-organizational business processes but this combination also raises certain cognitive
issues that need to be addressed. We will review some of the key cognitive models and theories of code
comprehension that have emerged in software code comprehension. This paper will propose a cognitive
model which will bring forth cognitive challenges, if handled properly by the organization would help in
leveraging software design and dependencies.

Keywords: Enterprise collaboration, Multi-agent, Cognitive features, software code comprehension,
mental model, software reengineering.

1. Introduction

Software code comprehension is a process of
mental ontology construction. It is directly
supported by existing mental model and
constructive learning theories. For software code
comprehension there is a need of unified
ontological representation for various software
artefacts. Such representation allows programmers
to reason about properties of the software system
through concept construction and ontology
exploration. A comprehension methodology is
integrat ion of exist ing strategy based
comprehension models into a unified knowledge
acquisition framework.

2. Code Comprehension

The ability to comprehend existing codebases is a
skill required by software engineers of all levels.
However, understanding another developer's
software is a difficult task that adds a large amount
of overhead when modifying and extending legacy
applications. There are often a wide range of
dependencies riddled throughout the codebase,
and analysing these by reading through multiple
source files and lines of code is extremely
inefficient. Reverse Engineering (Chikofsky et al.,
1990) is the process of analysing existing software
to create representations of the system at a higher
level of abstraction. It is an important technique in
the software development process, especially
during maintenance, refactoring, upgrading, etc.

Vol.XI, No. 2; September 2018 - February 2019

PURSHARTHA, Vol.XI, No. 2; September 2018 - February 2019doi: 10.21844/pajmes.v11i2.14628

2.1 Code Comprehension Tools

Today major amount of programming work is
accomplished on sophisticated software
applications which we called Integrated
Development Environment (IDE). IDE are
commonly favored by programmers because of
Rapid Application Development (RAD). It
provides programmers some special tools like;
Source Code Editor, Build Tools, Debugger,
Compiler or Interpreter, Version Control System
etc. These functionalities present more than one
perspectives of the same program in development
process. These representation forms are known as
Program Visualizations. Different programmers
use these functionalities (Tools) according to their

interest, which depends on factors like
programming language expertise, adjustment with
the IDE and personal preference (Zhu et al., 2015;
Eckert et al., 2016).

The field of software code comprehension research
has resulted in many diverse tools to assist in code
comprehension. Software code comprehension
tools generally implement a reverse engineering
process (Wong et al., 2008). Basic activities in
reverse engineering process includes:-

Ÿ Extraction.
Ÿ Analysis.
Ÿ Presentation.

Fig.1:Software code comprehension Tools

Extraction Tool

Analysis Tool

Presentation Tool

Inspection Tool

Visualization Tool

Code Comprehension Tools

2.1.1 Extraction tools include parsers and data
gathering tools to collect both static and dynamic
data. Static data is obtained by extracting facts
from the source code. A Fact Extractor should be
able to determine what artefactsthe program
defines, uses, imports and exports as well as
relationship between those artefacts. The
technologies underlying fact extractors are based
on techniques from compiler construct- ion (Aho
et. al. 2000).

Dynamic data is obtained by examining and
extracting data from the run time behavior of the

program. Such data can be extracted through a
wide variety of trace exploration tools and
techniques (Hamou-Lhadj et al. 2004).

2.1.2 Analysis tools support activities such as
clustering, concept assignment, feature
identification (Eisenbarth et al., 2003)
transformations, domain analysis, slicing and
metrics calculations. There are numerous software
techniques that can be used during reverse
engineering to identify software components
(Blackwell et al., 2003).

Vol.XI, No. 2; September 2018 - February 2019

50

D y n a m i c a n a l y s i s u s u a l l y i n v o l v e s
instrumentation of the source code. With dynamic
analysis only a subset of the program may be
relevant but dynamic traces can be very large
posing significant challenges during the analysis of
the data. Static analysis can be used to prune the
amount of information looked at during dynamic
analysis (Hassine et al., 2018).

2.1.3 Presentation Tools Include Code Editors,
Browsers, Hypertext Viewers and Visualizations.
In many cases the comprehension tools'
researchers use case studies. There have been some
usability experiments conducted to evaluate
program comprehension tools (Varoy et al., 2016).

Fig. 2: Knowledge acquisition

2.2 Types of Code Comprehension Process

2.2.1 Top-down comprehension

In case of Top-down comprehension (Brooks &
Frederick, 1987) process starts with a hypothesis
about the general nature of the program. This initial
hypo is then refined subsidiary hypothesis.
Subsidiary hypothesis are refined and evaluated in
a depth first manner. Top-Down comprehension
(Soloway et al., 1988 a,b) is used when the code is
familiar. It follows following steps: -

Knowledge Base is related to gathering
information from different servers connected
within a Network or, WAN (Ducassé&Emde,
1988).

Team

Co-worker

Knowledge

Base

User

Interested Worker

 Situation Model is related to situation arises
during code-decoding process. (Tapiero, 2007)

• In cae of normal way reading of source code,
the code decoding and comprehension process
fluency is good.

• In case of Learning (Lexical Analysis) of
source code i.e. Dyslexic, the code decoding

fluency is poor whereas the comprehension
process is good.

• In case of Learning without training i.e.
Hyperlexic, the code decoding fluency is good
whereas the comprehension process is poor.

• In case general program or, module learning
difficulties code decoding and comprehension
process fluency are both poor.

Vol.XI, No. 2; September 2018 - February 2019

Agent Mediated Code Comprehension: A Cognitive Challenge 51

D
E
C
O

D
I
N
G

COMPREHENSION

POOR

NORMAL
READING HYPERLEXIC

DYSLEXIC
GENERAL

DIFFICULTIES

GOOD

Fig. 3: Situation Model

 GOOD POOR

Program Model is inter-related with Program
Assessment, Capacity, Planning, Implementation
and Evaluation.

• Assessment of the program counts it's
importance and valuation of code.

• Capacity of program means it's impact and

scope.
• Planning of the program is used to give it a

proper structure and sequence of steps.
• Implementation of the program is to decide

area to implement, training and size.
• Evaluation of the program is related to program

nature.

Fig. 4: Program Model

Assessment

Evaluation

Implementation

Capacity

Planning

2.2.2 Bottom-up comprehension

In case of Bottom-Up comprehension assume that
programmers first read code statements and then,
mentally chunk or, group these statements into

higher level abstractions. It follows reverse
process of Top Down comprehension. These
abstractions are aggregated further until a high-
level understanding of the program is attained
(Shneiderman and Mayer 1979), Shneiderman and

Vol.XI, No. 2; September 2018 - February 2019

52

Mayer's cognitive framework differentiates
between syntactic and semantic knowledge of
programs.

According to Penington (Pennington, 1987a, b)
describes a Bottom up model. She observed that
programmers first develop control-flow
abstraction of a called program model.

Once the program model is fully assimilated the
situation model is develop. It encompasses
knowledge about data-flow abstraction and
functional abstraction. The assimilation process
describes how the mental model evolves using the
programmer's knowledge base together with
programmer's use code and documentation. It may
be top-down or bottom-up depending on
programmer's initial knowledge.

2.2.3 Systematic and As-needed comprehension

(Littman et al. 1987) describes two comprehension
strategies –

(i) Systematic comprehension:-

Systematic is where a programmer systematically
reads through code in detail, looking at both the
control-flow and data-flow abstractions is used to
obtain a thorough understanding of the code.

(ii) As-needed comprehension:-

As-needed comprehension is the method where the
programmer only looks at the code related to a

particular task. Parts of the code are looked at only
when the programmer needs to understand them.
As-needed comprehension description could be
thought of as describing both checklist and
scenario defect detection methods gets
highlighted.

(Littman et al. 1987) observed that programmers
either systematically read the code in detail, tracing
through the control-flow and data -flow abstraction
in the program to gain a global understanding of the
program or, that they take an as needed approach
focusing only on the code relating to a particular
task at hand.

Subjects using a systematic strategy acquired both
static knowledge (information about the structure
of the program) and casual knowledge
(interactions between components in the program
when it is executed). This enabled them to form a
mental model of the program.

This strategy is considered as knowledge base
strategy.

2.2.4 Integrated comprehension

Mayrhauser and Vans (1995) integrated the Top-
Down, Bottom-Up, Systematic and as needed
Comprehension strategies.

An Integrated Meta model developed by Von
Mayrhauser and Vans' builds on four major
components (models) like; Top-Down Model,
Program Model, Situation Model and Knowledge
Base.

Vol.XI, No. 2; September 2018 - February 2019

Agent Mediated Code Comprehension: A Cognitive Challenge 53

Fig. 5: Code Comprehension Approaches

Systematic and

As Needed

Approach

Cognitive Model Based

Approach

Bottom Up ApproachTop Up Approach

Knowledge Base

Situation Model

Program Model

Program Model

SituationModel

Knowledge Base

Integrated Model

3. Agent Concepts

A software agent is intelligent member of software
that works as an agent for a user or a different
program, working separately and constantly in a
meticulous environment (Wooldridge, 2009).
Agent concepts indicate builds (e.g. goals,
intention and beliefs) used in agent-based systems
and are abstracted away from low-level execution
builds. (Lam and Barber, 2005) Since agent
concepts are used in software designs to portray
agent structure (e.g. an agent puts in a nutshell
localized beliefs, goals, and intentions) and
behaviour (e.g. an agent carries out an action when
it considers the event occurred), agent concepts
should be leveraged for comprehending the code.
If the same concepts and models are used in
forward and reverse engineering, tools would be
able to better support re-engineering, round-trip
engineering, maintenance, and reuse (Stroulia and
Systä, 2002).

3.1 Mediator Agent

The agent, who acts as a negotiator between
service requester and service providers, is mediator
agent. It identifies the need of the service requester
agent and then selects the best service provider
agent by evaluating the profile of the various
software service provider agents and finally
negotiates between software service requester and
software service provider agent. Mediator Agent is
a coordinator agent at the enterprise level that
communicates with resource agents to perform
task scheduling, task execution and execution
process monitoring. When a request is made, the
mediator agent decomposes it as a set of tasks and
finds possible resources to complete these tasks.
The resource scheduling is a negotiation process in
that the mediator agent sends the bid request to
resource agents and makes the decision after
receiving the bid results.

Vol.XI, No. 2; September 2018 - February 2019

54

In Multi Agent System; negotiation service
brokering, cognitive parameter based selection,
and monitoring have been incorporated by some of
the researchers (Zambonelli et al., 2003). Very
limited numbers of researchers have implemented
the trust and other cognitive parameters in the
negotiation process. We have paid attention to the
cognitive parameter such as preference, desire,
intention, commitment, capability, trust etc. as
cognitive parameters for the selection of service
requester and service provider agents.

4. Cognitive Model

It is concerned with understanding of processes
that the human brain uses to handle complex tasks
including perceiving, learning, remembering, and
thinking, predicting and moving around the
system. Basic goal of a cognitive model is to
scientifically explaining more than one of the
above cognitive processes and their interaction
(Busemeyer&Diederich,2010). They help to
reveal information related to cognitive and
perceptual constraints.

It appears in many fields that deal with cognition,
ranging from perception to problem solving and
making decisions. It incorporates Mental models
which is according to Johnson – Laird's theory
(Johnson-Laird, 2010). It provides basic structure.
Mental Model (Pennington 1987b) plays a central
and unifying role in representing objects, state of
affairs, sequences of events around the world,
social and psychological actions of everyday

routine. Mental model are simplified versions of
complex scenario created in the working memory.
It is easier to conceive, interpret and help to predict
actions. Constructed mental model are based on:-

(a) Perception.
(b) Comprehension.
(c) Imagination.

Some of the cognitive models are proposed and
studied in the areas of text comprehension, graph,
picture comprehension, program comprehension
and human computer interaction.

Text comprehension (Just & Carpenter, 1992) is
important in research activities because of reading
and understanding the code whereas Text and
Diagram comprehension offers a cognitive
strategies and resulting mental representations.

A Cognitive Model describes the cognitive
processes and temporary information structures in
programmers' head. Cognitive features include the
following:-

Ÿ Knowledge level
Ÿ Social level
Ÿ Cooperation
Ÿ Coordination
Ÿ Belief
Ÿ Commitment
Ÿ Goal to achieve
Ÿ Capacity

Vol.XI, No. 2; September 2018 - February 2019

Agent Mediated Code Comprehension: A Cognitive Challenge 55

Cognitive

(thoughts)

Behavioral

(actions)

Relationships

with others

Affective

(feelings)

Fig. 6:Cognitive Model

There are two key strands of software code
comprehension research:-

(a) The first is empirical research which strives for
an understanding of cognitive processes that
programmers use when understanding
programs.

(b) The second involves technology research with
a focus on developing semi-automated tool
suppor t to improve sof tware code
comprehension.

It provides a meta-analysis of how two strands of
research are related. During 1970's various non-
technical and random methods were applied for
cognitive based code comprehension. Some
technical methods are evolved for cognitive based
code comprehension.

To understand and describe developer's mental
representation, mental model was used. This
mental model was evolved from a cognitive
module.

Fig. 7:Programmer's Mental Model

Cognitive Model

Mental Model

AI Based Research

for Code

Comprehension

Vol.XI, No. 2; September 2018 - February 2019

56

The mental model encodes the programmer's
current understanding of the program. It consists of
a specification of the program goals and the
implementation in terms of the data structures and
algorithms used.

4.1 Proposed Cognitive Model

When a person involved in studies to investigate
debugging strategies with multiple ways of
visualizations in IDE's, this limited the use of
representations. We have to select a few strategies
among them during the time of experiment. But
restricting the strategies gives not a proper solution
to the professional programmers. For this a special
type of IDE (jGRASP) is used, which offers a
combination of visualizations: performance-wise

and professionally both. It gives programmers
unrestricted access to many static and dynamic
visualization aids with program code.

A cognitive model has 3 (three) main components:-

(1) Cognitive Aids / Representations used while
debugging.

(2) A cognitive process is either primed by a
cognitive aid or, a process that is inherently
evoked.

(3) Mental Representations are derived from the
cognitive processes and cognitive aids.
Programmer constructs and manipulates
anybody's mental representations in case of
interacting with the programming environment
and understanding the information presented.

Fig. 8: Proposed Cognitive Model

Program Logic Flow Determination

Static Data, Static

Program Segment,

Control Flow and Data

Flow

Static Data, Static

Program Segment,

Control Flow and Data

Flow

Indications of

Control Structures,

Text Form

Representation of

Source Code and

Output Result,

Visualizing

Program Structure

Organization

(Program Analysis,

Knowledge

Representation and

Program Segment

Construction)

Indications of

Control Structures,

Text Form

Representation of

Source Code and

Output Result,

Visualizing

Program Structure

Integration

COGNITIVE AIDS COGNITIVE PROCESS

Problem

Definition

MENTAL MODEL PROCESS

Vol.XI, No. 2; September 2018 - February 2019

Agent Mediated Code Comprehension: A Cognitive Challenge 57

5. Conclusion

In this paper we reviewed some of the key
cognitive models and theories of code
comprehension that have emerged in combination
of code comprehension with software agents. This
paper proposed a cognitive model which supports
cognitive challenges based software code
comprehension, if handled properly by the
organization would help in professional &
performance-wise software design and
dependencies.

References

Aho, A.V., Sethi R., and Ullman J.D. (2000). Compilers :
Principals, Techniques and Tools. Addison Wesley.

Blackwell, A., Jansen A., & Marriott K. (2000). Restricted
Focus Viewer: A Tool for Tracking Visual Attention. Theory
and Application of Diagrams. 575-588.

Brooks, F. P. (1987). No Silver Bullet: Essence and Accidents
of Software Engineering. Computer, 20(4), 10-19.

Busemeyer, J.R., and Diederich, A. (2010). Cognitive
Modeling. SAGE Publication.

Chikofsky, E. J., and Cross, J. H. II. (1990). Reverse
engineering and design recovery: A taxonomy. IEEE Softw.,
7(1), 13–17.

Ducassé, M., and Emde, A. M. (1988). A review of automated
debugging systems: Knowledge, strategies and techniques.
International Conference of Software Engineering, 162–171.

Eckert, C., Cham, B., Sun J., and Dobbie, G. (2016). From
design to code: An educational approach. Proceedings of the
28th International Conference on Software Engineering &
Knowledge Engineering (SEKE 2016), 443–448.

Eisenbarth, T., Koschke, R., and Simon, D. (2003). Locating
Features in Source Code. IEEE Transactions on Software
Engineering, 29(3), 210-224.

Hamou-Lhadj, A., and Lethbridge, T. C. (2004). A Survey of
Trace Exploration Tools and Techniques. Proceedings of the
2004 conference of the Centre for Advanced Studies on
Collaborative research, 42-55.

Hassine, J., Hamou-Lhadj, A., and Alawneh, L. (2018). A
framework for the recovery and visualization of system
availability scenarios from execution traces. Information and
Software Technology, 96, 78-93.

Tapiero, I. (2007). Situation Models and Levels of
Coherence: Toward a Definition of Comprehension.
Mahwah, NJ, US: Lawrence Erlbaum Associates Publishers.

Johnson-Laird, P. N. (2010). Mental models and human
reasoning. National Academy of Science, PNAS Early
Edition, 107(43), 18243-18250.

Just, M.A., and Carpenter P.A. (1992). A Capacity Theory of
Comprehension: Individual Differences in Working
Memory. Psychological Review, 99(1), 122-149.

Lam, D.N., and Barber, K.S. (2005). Comprehending Agent
Software. AAMAS '05 Proceedings of the fourth international
joint conference on Autonomous agents and multiagent
systems. 586-593

Littman, D.C., Pinto, J., Letovsky S., and Soloway, E. (1987).
Mental models and software maintenance. Journal of
Systems and Software, 7(4), 341-355
Mayrhauser A.V., and Vans, A.M. (1995). Program
comprehension during software maintenance and evolution.
IEEE Computer, 44–55.

Pennington, N. (1987a). Comprehension strategies in
programming. Comprehension strategies in programming.
Empirical studies of programmers: second workshop, 100
–113.

Pennington, N. (1987b). Stimulus Structures and Mental
Representations in Expert Comprehension of Computer
Programs. Cognitive Psychology, 19, 295-341.

Soloway, E., Adelson, B., & Ehrlich, K. (1988a). Knowledge
and Processes in the Comprehension of Computer Programs.
In Chi, M.T.H., Glaser, R., and Farr, M.J. (Eds.), The Nature
of Expertise (pp.129-152). Hillsdale, N.J.: Erlbaum.

Soloway, E., Lampert, R., Letovsky, S., Littman, D., and
Pinto, J. (1988b). Designing documentation to compensate
for delocalized plans. Communications ACM, 1259-1267.

Shneiderman, B., and Mayer, R. (1979). Syntactic/Semantic
Interactions in Programmer Behavior: A Model and
Experimental Results. International Journal of Computer

Vol.XI, No. 2; September 2018 - February 2019

58

and Information Sciences, 8(3), 219-238.

Stroulia, E., and Systä, T. (2002). Dynamic Analysis for
Reverse Engineering and Program Understanding. ACM
SIGAPP Applied Computing Review, 10(1), 8-17.

Varoy, E., Burrows, J., Sun, J., and Manoharan, S. (2016).
From code to design: A reverse engineering approach.

stProceedings of 21 IEEE International Conference on
Engineering of Complex Computer Systems, ICECCS, 2016.
Institute of Electrical and Electronics Engineers. 181-186.

Wong, S., Warren, I., and Sun, J. (2008). A scalable approach
to multistyle architectural modeling and verification. 13th

IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS 2008), 25–34.

Wooldridge, M. (2009). An introduction to Multiagent
ndsystems. Wiley publication 2 edition.

Zambonelli, F., Jennings, N.R., and Wooldridge M. (2003).
Developing multiagent systems: The Gaia methodology.
ACM Transactions on Software Engineering and
Methodology (TOSEM), 12 (3), 317-370

Zhu, H., Sun, J., Dong, J.S., and Lin, S.W. (2015). From
Verified Model to Executable Program: the PAT Approach.
Innovations in Systems and Software Engineering, 1–26.

Vol.XI, No. 2; September 2018 - February 2019

Agent Mediated Code Comprehension: A Cognitive Challenge 59

