
Print ISSN: 0975-024X; Online ISSN: 2456-1371Vol. XVII, No. 2; September 2024 - February 2025

REVIEW PAPER

Machine Learning Models for Software Defect Detection:
A Strategic Management Approach

1 2Sripriya Roy Chowdhuri , Manjari Gupta
1Assistant Professor, School of Management Sciences, Varanasi, & Research Scholar, DST-Centre for Interdisciplinary Mathematical Sciences, BHU, Varanasi
2Departtment of Computer Science, Banaras Hindu University, India & Coordinator, DST-Centre for Interdisciplinary Mathematical Sciences, BHU, Varanasi

Abstract

Businesses are at serious risk from software flaws, which can affect consumer trust, security, and operational effectiveness. Proactive
quality assurance is made possible by machine learning's (ML) creative approaches to software defect detection and prediction. From the
standpoint of strategic management, companies can manage the allocation of resources efficiently, increase decision-making, and
improve overall software quality by incorporating machine learning (ML) models into defect detection procedures. This study examines
the business ramifications of AI-driven quality assurance as well as the different machine learning models used for software defect
identification and their incorporation into IT management plans. The paper emphasizes ML's significance in long-term strategic planning
and operational efficiency alongwith highlighting the difficulties, advantages, and potential future directions of using it for defect
management in organizational settings.

Keywords: Machine learning, software defects, defect detection, IT management, strategic management, AI in quality assurance.

DOI: 10.21844/16202117206

2025

(Corresponding Author: Sripriya Roy Chowdhuri, Assistant Professor,
School of Management Sciences, Varanasi, & Research Scholar, DST-
Centre for Interdisciplinary Mathematical Sciences, BHU, Varanasi
E-mail: sripriya@smsvaranasi.com
How to Cite the article: Chowdhuri, S.R.; Gupta, M. (2025). Machine
Learning Models for Software Defect Detection: A Strategic
Management Approach . Purushartha, 17(2), 87-98
Source of Support: Nil
Conflict of interest: None

Introduction

Defects in software applications produce
substantial economic damage and negative
reputation effects and security holes which makes
defect management essential for effective software
engineering and IT governance. The software
industry faces intense market competition together
with rapid growth and technological advancements
according to Trayambak et al. (2016). Software
reliability stands today as both a technical
obligation and strategic business requirement in
organizations of the present business world.
Today's organizations depend heavily on their
software systems for operational efficiency
together with enhanced customer trust which leads
to market competitiveness. Manual testing together
with rule-based methods have demonstrated their
ineffectiveness in managing large software projects
because they produce excessive costs while
requiring significant time and introducing human
mistakes. Machine learning (ML) has become the
foundational transformative solution that enables
automatic defect identification and prediction

through data algorithms. Organizations who
incorporate ML into defect management systems
can gain predictive abilities for software
vulnerability identification as well as better
decision processes and improved resource
optimization. Finding quality people has become
essential due to a competitive industry, rising
technology levels for conducting business, and
increas ingly demanding cus tomers both
domestically and internationally (Singh and
Sabharwal, 2020). This will lead to emergence of
quality decision making for better software
development.

The wor ld has exper ienced t remendous
industrialization as a result of the astounding

scientific and technological advancements over the
past few decades (Ali and Sinha, 2016). Padma and
Aravamudhan (2021) suggest that employees
should be made aware that nothing in the company
they work for is constant and that constant change
is necessary to keep things from becoming
outdated. In addition to evaluating the operational
environment's scope and regulations, one must also
focus on making the best use of the limited
resources available (Kumar and Bhandarkar,
2020).

From a strategic management perspective,
leveraging ML models for defect detection allows
businesses to align their software quality assurance
processes with long-term corporate goals. AI-
driven defect management fosters operational
resilience, supports agile development practices,
and enhances risk mitigation strategies. While
successful firms institutionalize innovation, which
is consistently reflected in their products,
processes, and business models, many companies
exhibit bursts of innovation during brief periods of
time or in certain business or product lines (Botla
and Kondur, 2018). Software defects place
businesses under significant danger because they
harm consumer trust and operational effectiveness
as well as security. Machine learning through its
innovative approaches enables the development of
proactive quality assurance systems for software
defect identification and forecast. Strategic
management gains enhanced operational efficiency
through resource allocation management and
better decision-making and overall software
quality outcomes when ML models are integrated
into defect detection procedures. The research
evaluates the operational effects of AI-controlled
quality assurance while exploring multiple
machine learning models which detect software
defects and thei r implementat ion in IT
management plans. The study presents details
about ML's essential role in strategic planning and
operational efficiency yet also explains challenges
with future directions and benefits of using it for

organizational defect management systems. Global
software market demands unprecedented code
comprehension because it requires enterprises to
combine information systems and share knowledge
through cooperative platforms (Gupta et al., 2018).

Business operations suffer from major risks
because of software defects which cause decreased
efficiency, security vulnerabilities and loss of
customer confidence. Machine learning through
ML delivers modern methods to forecast and spot
software problems which leads to active quality
control practices. The adoption of ML models for
defect detection in organizations enables better
strategic resource usage while strengthening
managerial choices and better total software quality
outcomes. This paper examines AI-driven software
defect detection through several ML models
together with their IT management integration and
their business consequences for quality assurance.
An investigation presents key challenges and
advantages of using ML-based defect management
while identifying future growth directions
alongside its importance in enterprise operational
and strategic programs. The paper examines
multiple ML approaches for detecting software
defects while discussing how they fit into IT
management practices and business implications
for strategic development and sustainable software
creation.

The major goals of this study includes the
following:

i. The study focuses on how ML models can
automate the detection and forecasting of
software defects.

ii. The study evaluates how AI and ML systems
improve strategic decision making processes
in organizations as well as allocate resources
effectively.

iii. A review of different ML models for software

88Vol. XVII, No. 2; September 2024 - February 2025

Machine Learning Models for Software Defect Detection: A Strategic Management Approach

defect detection in various software
environments exists as an evaluation
objective.

iv. The research studies business advantages of
ML technology for software defect
management through an evaluation of cost
reduction and competitive advantage
assessment.

v. The research addresses different
implementation obstacles of ML-based
defect detection systems by providing
recommendations for their resolution.

Literature Review

Machine learning has undergone extensive
assessment for detecting software defects.
Different research groups studied multiple models
alongside their performance results in different
operational contexts.

Traditional Approaches to Software Defect
Detection

The existing software defect detection process used
manual and rule-based testing methods. The
research team performed software tests which
included both heuristic-based analysis and peer
reviews of source code and static code inspection
methods. According to Basili and Rombach (2002)
the combination of these methods delivered no
advantage when applied to complex large-scale
software development projects due to growing
project complexity and insufficient effectiveness as
well as errors from human operators. Different
datasets processed by Lessmann et al. (2008)
through their chosen classification techniques
resulted in encouraging prediction accuracy while
developing a new defect prediction methodology.

Machine Learning in Software Defect Prediction

Research has proven that using decision trees with
support vector machines (SVM) and neural
networks produce better results than conventional
approaches because these ML models demonstrate
exceptional abilities in software defect detection.
The analytic tool accesses historical defect
databases while finding programming related
patterns of code that help it detect forthcoming
system vulnerabilities before error formation
(Menzies et al., 2006; Hall et al., 2011). Combining
hyperparameter optimization strategies with the
resolution of data inconsistencies in software defect
detection models provides an approach to improve
their operational capability. NSGA-II together with
SMOTE function as methods to increase both
model accuracy and generalization capabilities
according to Elshamy et al. (2023). Better
predictive results result from the technical approach
because it bridges traditional defect prediction
features with code semantic understanding (Wang
et al., 2020).

Strategic Management Implications of Machine
Learning in Defect Detection

Current research puts Artificial Intelligence (AI)
implementation in strategic management with
defect detection applications at its core (Kending,
2020). Execut ion of AI within s t rategic
management procedures improves decision quality
while optimizing resources and operations which
enables sustainable business conduct (Jankovic and
Curovic, 2023) . Companies gain market
advantages by implementing AI technology to sort
and manage data efficiently according to industry
requirements (Mikalef et al., 2017) Yet Wang et al.
(2018) and Nishant et al., (2020) detected higher
potential for exploitation in regular business
operations, then Schneider et al.(2019) discovered
comprehensive business process data yielded
substantial value for strategic choices and
opera t iona l enhancement and cus tomer
understanding. Organizations gain maximum
benefits when they implement complementary

89Vol. XVII, No. 2; September 2024 - February 2025

Machine Learning Models for Software Defect Detection: A Strategic Management Approach

technologies while conducting internal research
and development (Lee et al., 2022). The study by
Kelly (Kelly et al., 2023) assessed more than 60 AI
adoption elements found in the research literature.

The Role of Machine Learning in Software
Defect Detection

The standard software flaw identification methods
consisting of code review workflows and rule-
driven inspections require enormous manual effort
and show both high expense and frequent human
mistakes. These limitations in traditionnal
methodologies get resolved through ML-based
methods which extract knowledge from existing
defect records to establish prediction models that
detect faults effectively. The application of ML
performs three vital functions in defect
management systems for software:

Automated Defect Prediction:

Computers utilize ML models to study past
software defect records so they can determine
patterns for detecting potential errors in new
programming code. The systems utilize previous
bug reports for training purposes to identify code
quality issues and detect potential flaws before
system release. The dual advantage of programmed
defect prediction systems includes shorter
debugging periods together with early detection of
faulty code segments to enhance software
reliability.

Anomaly Detection:

Machine learning algorithms conduct anomaly
detection using multiple approaches to pinpoint
irregular patterns that point to problems when
software is running and code sequences execute.
Unsupervised learning practices support these
detection methods by helping them discover code
patterns that break normal programming protocols.
The abilities of anomaly detection technology

exceed traditional testing methods in vulnerability
discovery making it required for software testing
processes. Users can detect inspection needs
through the combination of deep learning and
clustering algorithms which operate within ML
models.

Automated Root Cause Analysis:

Designers who implement Machine Learning
models can conduct automated Root Cause
Analysis by allowing analytical tools to detect
system defects automatically in order to accelerate
defect resolution processes. The stepwise analysis
method breaks down past defect data using ML to
establish patterns that anticipate likely defective
factors in new system problems. Through this
capability teams shorten their debugging time
which enables them to work on solution
implementation while they no longer need to spend
time detecting error sources manually.

Risk-Based Testing:

Designers who implement Machine Learning
models can conduct automated Root Cause
Analysis by allowing analytical tools to detect
system defects automatically in order to accelerate
defect resolution processes. The stepwise analysis
method breaks down past defect data using ML to
establish patterns that anticipate likely defective
factors in new system problems. Through this
capability teams shorten their debugging time
which enables them to work on solution
implementation while they no longer need to spend
time detecting error sources manually.

Adaptive Learning for Continuous Improvement:

ML uses adaptive learning that improves
continuously to drive defect detection systems in a
per iod of consis tent progress . Sof tware
development creates new versions which enable
ML models to obtain updated information to

90Vol. XVII, No. 2; September 2024 - February 2025

Machine Learning Models for Software Defect Detection: A Strategic Management Approach

develop better detection of emerging system
issues. Through continuous learning the systems
retain their ability to find new vulnerabilities and
maintain compatibility with updated development
approaches.

Integration with DevOps and Agile Workflows:

The implementation of ML for defect detection
operates effectively inside DevOps automation
systems and Agile work management frameworks.
The automation in CI/CD pipelines accepts defect
prediction and anomaly detection systems to
automatically detect and resolve real-time bugs at
runtime. Integration brings together improved
software development velocity with no negative
impact on superior quality and reliability
standards.

Natural Language Processing (NLP) for Defect
Classification:

The combination of NLP functionality enables ML
models to analyze documentation alongside
development dialogue alongside bug reports to
track defects in an organized manner. The software
provides operational advantages through the
automation of failure detection and error
identification which aids producers in making more
reliable software.

Deep Learning for Code Analysis:

Neural network-based deep learning techniques
succeed in finding code-based fea tures
automatically to analyze software code defects
effectively. Neural networks of both types (CNNs
and RNNs) examine software code structures
combined with execution traces to find potential
defects. The models surpass traditional rule-based
approaches because they correctly identify the
complex patterns which exist within software
codebases.

Machine Learning Models for Software Defect
Detection

Linear Regression:

The supervised learning process known as linear
regression enables predictions of continuous target
variables based on multiple input values. The model
assumes a linear relationship between the
dependent variable y and independent variables x,
expressed as:

The x , x through x variables function as 1 2 n

independent variables or predictors or features
while the intercept term is β and β through β 0 1 n

represent the weights that apply for corresponding
input attributes to output values with ϵ as the error
component (Montgomery et al., 2021).Training
occurs through the utilization of the least squares
approach when minimizing the total square error.
Linear regression remains widespread across
various fields including biology and economics and
machine learning because i t offers easy
implementation together with straightforward
interpretation (James et al., 2013). Despite being
useful for complex cases the three assumptions of
linearity, homoscedasticity and the absence of
multicollinearity become constraints for its
application.

Decision Trees and Random Forest:

Supervised learning through Decision Trees and
Random Forest operates as a decision tree method
to solve classification and regression tasks. Data
segmentation using feature values produces an
orderly tree structure through which the data flows
until it reaches predictions located at the leaf nodes
while internal nodes provide feature-based
decisions and branches present potential outcomes.
The division process employs defined metrics and
values to reduce data set impurities (Quinlan,
1986). A Random Forest is an ensemble learning

y=β + β x + β x +…+ β x + ϵ (1)0 1 1 2 2 n n

91Vol. XVII, No. 2; September 2024 - February 2025

Machine Learning Models for Software Defect Detection: A Strategic Management Approach

method that builds multiple decision trees and
combines their outputs for better accuracy and
generalization. It reduces overfitting by averaging
predictions (regression) or using majority voting
(classification). Random forests introduce
randomness by bootstrapping (sampling data with
replacement) and selecting random subsets of

features for each tree (Breiman, 2001). This results
in robust models resistant to noise and outliers.
Random forests outperform single decision trees in
many real-world applications, such as medical
diagnosis, fraud detection, and recommendation
systems, due to their ability to handle high-
dimensional data effectively (Liu et al., 2012).

Decision Tree-1

Result-1

Decision Tree-2

Result-2

Decision Tree-N

Result-N

Majority Voting / Averaging

Final Result

Dateset

Figure 1: Working of Random Forest by combining results from different Decision Trees
(Source: https://www.analyticsvidhya.com/blog/2020/05/decision-tree-vs-random-forest-algorithm/)

In order to solve issues like distributional shifts and
interoperability, recent research has brought novel
improvements to decision trees and random
forests. DeLise (2023) presented "Era Splitting," a
method that incorporates era-wise data into
decision tree models to improve out-of-distribution
generalization, particularly in financial markets.
The algorithm assists tree-based models to identify
opt imal spl i t s i tes which enhance their
performance when processing different data
periods thus enhancing their distribution-resistant
capabilities. The research of Ren et al. (2022)
implemented intuitionistic fuzzy decision trees as
part of their random forest framework through the
development of Intuitionistic Fuzzy Random
Forest (IFRF). The ensemble approach uses fuzzy
logic strength combined with multiple classifiers to

achieve superior classification results than
traditional ensemble and fuzzy systems.

Support Vector Machines (SVM):

The Support Vector Machine (SVM) functions as a
strong supervised learning method to handle
classification together with regression tasks. The
algorithm finds the optimum hyperplane in datasets
which creates the largest possible distance between
different class allocations. The decision-boundary
of a classification problem depends heavily on
support vectors which represent the points nearest
to the hyperplane (Cortes & Vapnik, 1995). The
SVM model demonstrates proficiency in two
domains: linear classification and non-linear
classification along with delivering excellent

92Vol. XVII, No. 2; September 2024 - February 2025

Machine Learning Models for Software Defect Detection: A Strategic Management Approach

results in high-dimensional scenarios. The kernel
methods of polynomial, radial basis function and
sigmoid are used by SVM to transform the initial
input dimensions into higher dimensions enabling
linear separators to separate data points that cannot
be separated by linear boundaries (Boser et al.,
1992). The high level of resistance exhibited by
SVM helps it become the dominant choice for
image-recognition tasks together with text-
classification and bio-informatics applications
(Hsu et al., 2003).

The Support Vector Machines (SVMs) have
experienced several new applications alongside
significant developments during the past years.
Support Vector Machines (SVMs) help medical
staff utilize MRI for breast cancer detection and

PET-CT for lung cancer diagnosis. Bio-informatics
makes use of these models to identify genes that
cause colon cancer and leukemia. (Guido et al.,
2024)

Neural Networks:

The deep pattern identification for large-scale
defect-prone code-bases is performed by neural
networks which derive their design from human
brain functions. A neural network contains various
synthetic neuron layers that perform data analysis
through weighted connection systems. Neural
networks rely on activation functions that process
input data at their basic components which include
an input layer with possible hidden layers and a final
output layer (LeCun et al., 2015).

Weight

Input

Liner Weights

Output

Radial Basis Functions

Figure 2: Neural Network (Laxmi and Rohil, 2014).

Deep learning operates as a neural network subset
that process numerous hidden layers to extract
hierarchical information from raw inputs
effectively when optimizing applications such as
picture identification and natural language
processing and speech recognition (Krizhevsky et
al., 2012).

Performance Metrics for Evaluating Machine
Learning Models in Defect Detection

Strong performance metrics are necessary to
evaluate machine learning (ML) defect detection

models because they help measure accuracy
alongside precision and recall levels and additional
vital factors. The metrics enable assessment of
model capability to differentiate defective from
non-defective items.

Accuracy:

Accuracy measures the proportion of correctly
predicted instances out of the total instances:

Accuracy =
(TP+TN)

(TP+TN+FP+FN)
(2)

93Vol. XVII, No. 2; September 2024 - February 2025

Machine Learning Models for Software Defect Detection: A Strategic Management Approach

Ÿ TP (True Positive): Defective items correctly
classified as defective.

Ÿ TN (True Negative): Non-defective items
correctly classified as non-defective.

Ÿ FP (False Positive): Non-defective items
incorrectly classified as defective (Type I
Error).

Ÿ FN (False Negative): Defective items
incorrectly classified as non-defective (Type II
Error).

Ÿ The usage of accuracy metric proves beneficial
when collections are balanced between
defective and non-defective specimens. The
solitary use of accuracy proves inadequate
when dealing with extremely imbalanced
datasets.

Precision:

Precision measures how many predicted defectives
are actually defective:

High precision means fewer false positives,
reducing unnecessary interventions (e.g., rejecting
good products in manufacturing).

Recall:

Recall evaluates the ability to detect all defective
items. It is calculated as:

High recall ensures fewer false negatives,
preventing defective items from being mistakenly
passed as non-defective.

Precision =
TP

(TP+FP)
(3)

Precision =
TP

(TP+FN)
(4)

F1-Score:

This metric provides a combined assessment that
combines Precision and Recall for a balanced
measurement.

The particular metric serves production quality
control systems well because it creates minimum
errors in the form of false positives and false
negatives.

ROC-AUC (Receiver Operating Characteristic –
Area Under Curve):

A model can demonstrate its discrimination power
using the ROC-AUC metric when operating at
different threshold points. Such system strength
becomes apparent when its AUC (Area Under
Curve) value gets close to 1.0. Use of this method is
required when algorithms need to find an optimal
point for false negative and false positive rates.

Strategic Management of Machine Learning
Based Defect Detection

ML integration into defect detection systems brings
transformative value which needs strategic
planning along with organizational alignment
beyond technological improvements. ML-driven
defect detection brings enormous possibilities to
enhance quality control methods while cutting
operational expenses and maintaining shorter
production runs. Business organizations can
achieve these advantages by handling the adoption
with care while preparing their data adequately and
minimizing possible risks and supporting workers
through workflow transition.

Adoption Strategies:

The successful implementation of ML integration
highly depends on the adoption strategies. AI

F1 = 2*
Precision * Recall

Precision + Recall
(5)

94Vol. XVII, No. 2; September 2024 - February 2025

Machine Learning Models for Software Defect Detection: A Strategic Management Approach

initiatives need to track their progress with the
existing organizational objectives. Organizations
need to choose the defect detection applications
which matter most followed by success metric
definitions that focus on increased defect detection
and lowered manual inspection times and product
returns. The identification of critical use
applications along with setting performance
evaluation metrics that include defect detection
boost rates and minimum operational downtime
represents part of this process. organizations must
rely on collaborative teams across different
departments while needing executive sponsorship
(Bughin et al., 2017). The cultural adoption of
innovation depends heavily on leadership backing
and collaboration between different organizational
departments. Organizations run effective solution
development through initial testing of small scale
projects that help them evolve and expand their
work.

Data Management:

Data Management functions as an essential
operational foundation that enables the training of
dependable ML models. The model requires high-
quality datasets for both learning purposes and
effective generalization abilities. The model
becomes stronger because of diverse datasets that
include normal cases and defective ones across
different manufacturing conditions.

Risk Mitigation:

Risk Mitigation stands as the key element because
AI systems generate errors in their output. False
positive errors classify acceptable items as
defective thus creating wasteful costs yet false
negative errors do not detect genuine product flaws
leading to hazardous quality and safety concerns.
Threshold tuning enables better precision-recall
ratios for companies alongside human-based
supervision of uncertain analysis situations. The
implementation of bias detection systems during

audits promotes model fairness to support various
data applications and end user requirements. The
combination of model-calibration techniques with
bias audits alongside human-controlled verification
methods serves as basic approaches to manage
potential risks according to Amershi et al. (2019).
These implemented measures produce trusted
automated-decis ion sys tems that enable
responsible decision making.

Change Management:

AI-system implementation success depends on
Change Management to provide training and
inspiration about AI system practice for various
employees. Most teams experience initial mistrust
toward automation when it is introduced for the first
time. The adoption of new strategies for progress
becomes simpler by giving documentation access
and giving training to employees and involving
them in project development stages (Westerman et
al., 2014). The implementation of AI-based defect
detection tools faces numerous obstacles when
quality-assurance teams needed to perform
acceptance during their adoption process.
Implementation of training programs paired with
documentation methods during interactive
workshops will assist people in adapting to such
changes. Organizations need an honest dialogue
system and employee involvement for creating
better trust-building programs between automation
and human operators.

Organizations must address critical elements of
technology and operational demands and labor
requirements when applying strategic approaches
to AI-driven defect monitoring systems. Complete
achievement of AI potential for defect detection
requires organizations to connect their AI initiatives
to their business strategy along with strong data
systems for implementing change safely
throughout the organization. These strategies
enable organizations to achieve advanced quality
assurance capabilities while establishing a flexible

95Vol. XVII, No. 2; September 2024 - February 2025

Machine Learning Models for Software Defect Detection: A Strategic Management Approach

data-oriented method for strategy execution.

Business Implications of Machine Learning
Based Software Defect Management

Cost Reduction-

The analytical detection of defects commonly
requires workers to spend long durations screening
problems manually. The implementation of ML
algorithms for test case automation and bug
classification and defect prediction allows
companies to diminish their requirement for
manpower alongside lowering quality assurance
duration requirements. Through automation the
testing process becomes more efficient which
reduces expenses from late-stage modifications
whi le speeding up development phases
(Choudhary et al., 2021).

Faster Time-to-Market-

The main advantage comes from expedited product
delivery. ML models evaluate code patterns and
system logs and historical defect records to detect
potential bugs before the development stage ends.
The warning system activated early in the
development process lets developers resolve
problems ahead of time which speeds up both
testing efforts and release timelines. Ultimately
both customer satisfaction growth and faster
competition response are achieved through faster
product delivery (Sharma & Sharma, 2022).

Enhanced Software Quality-

Software Quality receives enhancement through
Machine Learning because the technology
examines enormous datasets which enable
examiners to find elusive defects or repeatedly
recurring flaws which testing personnel would
have overlooked. Higher accuracy emerges due to
this process when detecting and ordering defects.
Model learning technology advances software

reliability which produces fewer problems for end-
users that results in better product reputation and
increased brand trust (Zhou et al., 2019).

Competitive Advantage-

Takeover opportunities in the market emerge
through ML-based defect management systems that
allow organizations to outperform competitors
successfully. These companies benefit from data
insights together with automation technologies
which enables them to perform innovation at a
quicker pace while releasing superior quality
products with maximized resource productivity.
The fulfillment of software quality standards for
customer satisfaction leads to business advantages
in market share expansion and extended growth
primarily within finance sectors and healthcare
sectors and e-commerce industries.

Conclusion and Future Scope

A support system based on machine learning
technologies for defect detection represents an
advanced level in IT quality management
frameworks and software development systems. By
moving away f rom pos t - re lease tes t ing
organizations can predict defects early in
development thus improving software reliability
while saving costs of fixing and supporting the
software after release. Information technology
department leaders now possess sufficient authority
to replace traditional quality assurance procedures
by utilizing analytical methods that enhance their
defect handling practices. For organizations to
achieve full implementation of ML-based defect
detection they must invest specifically in multiple
vital areas. The achievement of effective defect
detection systems by organizations depends on
access to high-quality substantial training data. The
first step of effective ML model development
requires datasets which include precise information
alongside diverse content accompanied by
appropriate documentation. The development of

96Vol. XVII, No. 2; September 2024 - February 2025

Machine Learning Models for Software Defect Detection: A Strategic Management Approach

strong ML algorithms which are both explainable
and adaptive leads to better defect detection
performance throughout various code bases. To
properly handle ethical dangers together with
model transparency and performance evaluation
organizations must adopt AI governance
frameworks.

Several opportunities for future ML application in
defect detection extend across various fields.
Organizations attain a competitive advantage when
they integrate AI-driven defect detection systems
into their operational workflows because they
achieve better delivery time coupled with superior
software quality while establishing improved
customer satisfaction. Apart from Machine
Learning, organizations need to explore the
domain of Deep Learning for software defect
detection and also the application of Statistical
analysis of the results will support in the adoption
of techniques that will greatly enhance the
productivity of the organizations in various aspects
and also effective resource utilization.

References:

Ali, Z., & Sinha, A. R. (2016). Integrating Ethics in Technical
Education for sustainable development. PURUSHARTHA-A
journal of Management, Ethics and Spirituality, 9(1), 85-97.

Amershi, S., Weld, D., Vorvoreanu, M., Fourney, A., Nushi, B.,
Collisson, P., ... & Horvitz, E. (2019, May). Guidelines for human-AI
interaction. In Proceedings of the 2019 chi conference on human
factors in computing systems (pp. 1-13).

Basili, V. R., & Rombach, H. D. (2002). The TAME project:
Towards improvement-oriented software environments. IEEE
Transactions on software engineering, 14(6), 758-773.

Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992, July). A training
algorithm for optimal margin classifiers. In Proceedings of the fifth
annual workshop on Computational learning theory (pp. 144-152).

Botla, L., & Kondur, H. (2018). Socio technical systems of a
company: the dimensionality of socio technical systems.
PURUSHARTHA-A journal of Management, Ethics and
Spirituality, 11(1), 24-38.

Bughin, J., Hazan, E., Sree Ramaswamy, P., DC, W., & Chu, M.
(2017). Artificial intelligence the next digital frontier.

Capretz, L. F., & Lee, P. A. (1992). Reusability and life cycle issues
within an object-oriented methodology. Computing Laboratory
Technical Report Series.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine
learning, 20, 273-297.

DeLise, T. (2023). Era Splitting: Invariant Learning for Decision
Trees. arXiv preprint arXiv:2309.14496.

El Emam, K., Benlarbi, S., Goel, N., & Rai, S. N. (2001). Comparing
case-based reasoning classifiers for predicting high risk software
components. Journal of Systems and Software, 55(3), 301-320.

Elshamy, N., AbouElenen, A., & Elmougy, S. (2023). Automatic
Detection of Software Defects based on Machine Learning.
International Journal of Advanced Computer Science and
Applications. https://doi.org/10.14569/ijacsa.2023.0140340.

Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep
learning (Vol. 1, No. 2). Cambridge: MIT press.

Guido, R., Ferrisi, S., Lofaro, D., & Conforti, D. (2024). An overview
on the advancements of support vector machine models in healthcare
applications: a review. Information, 15(4), 235.

Gupta, R. G., Mazumdar, B. D., & Yadav, K. (2018). Agent Mediated
Code Comprehension: A Cognitive Challenge. PURUSHARTHA-A
journal of Management, Ethics and Spirituality, 11(2), 49-59.

Hall, T., Beecham, S., Bowes, D., Gray, D., & Counsell, S. (2011). A
systematic literature review on fault prediction performance in
software engineering. IEEE Transactions on Software Engineering,
38(6), 1276-1304.

Hsu, C. W., Chang, C. C., & Lin, C. J. (2003). A practical guide to
support vector classification.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An
introduction to statistical learning (Vol. 112, No. 1). New York:
springer.

Jankovic, S., & Curovic, D. (2023). Strategic Integration of Artificial
Intelligence for Sustainable Businesses: Implications for Data
Management and Human User Engagement in the Digital Era.
Sustainability. https://doi.org/10.3390/su152115208.

Keding, C. (2020). Understanding the interplay of artificial
intelligence and strategic management: four decades of research in
review. Management Review Quarterly , 71, 91 - 134.
https://doi.org/10.1007/s11301-020-00181-x.

Kelly, S., Kaye, S. A., & Oviedo-Trespalacios, O. (2023). What
factors contribute to the acceptance of artificial intelligence? A
systematic review. Telematics and Informatics, 77, 101925.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet
classification with deep convolutional neural networks. Advances in
neural information processing systems, 25.

97Vol. XVII, No. 2; September 2024 - February 2025

Machine Learning Models for Software Defect Detection: A Strategic Management Approach

Kumar, S., & Bhandarker, A. (2020). Experiential learning and its
efficacy in management education. PURUSHARTHA-A journal of
Management, Ethics and Spirituality, 13(1), 35-55.

Laxmi, V., & Rohil, H. (2014). License plate recognition system
using back propagation neural network. International Journal of
Computer Applications, 99(8), 29-37.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature,
521(7553), 436-444.

Lee, Y. S., Kim, T., Choi, S., & Kim, W. (2022). When does AI pay
off? AI-adoption intensity, complementary investments, and R&D
strategy. Technovation, 118, 102590.

Lessmann, S., Baesens, B., Mues, C., & Pietsch, S. (2008).
Benchmarking classification models for software defect prediction:
A proposed framework and novel findings. IEEE transactions on
software engineering, 34(4), 485-496.

Menzies, T., Greenwald, J., & Frank, A. (2006). Data mining static
code attributes to learn defect predictors. IEEE transactions on
software engineering, 33(1), 2-13.

Mikalef, P., Framnes, V. A., Danielsen, F., Krogstie, J., & Olsen, D.
(2017). Big data analytics capability: antecedents and business
value.

Montgomery, D. C., Peck, E. A., & Vining, G. G. (2021).
Introduction to linear regression analysis. John Wiley & Sons.

Nishant, R., Kennedy, M., & Corbett, J. (2020). Artificial
intelligence for sustainability: Challenges, opportunities, and a
research agenda. International journal of information management,
53, 102104.

Padma, R. N., & Aravamudhan, N. R. (2021). The Impact of
Learning and Culture on Organizational Identification: An Indian
Case Study. PURUSHARTHA-A journal of Management, Ethics and
Spirituality, 14(2), 44-56.

Ren, Y., Zhu, X., Bai, K., & Zhang, R. (2022). A new random forest
ensemble of intuitionistic fuzzy decision trees. IEEE Transactions on
Fuzzy Systems, 31(5), 1729-1741.

Schneider, S., & Leyer, M. (2019). Me or information technology?
Adoption of artificial intelligence in the delegation of personal
strategic decisions. Managerial and Decision Economics, 40(3),
223-231.

Singh, A. K., & Sabharwal, S. (2020). Talent management: An
empirical analysis of its antecedents and consequences applying
structural equation modeling. PURUSHARTHA-A journal of
Management, Ethics and Spirituality, 13(2), 1-16.

Traymbak, S., Kumar, P., & Jha, A. N. (2016). Examining moderating
effects of gender between role stress and job satisfaction among
software employees. PURUSHARTHA-A journal of Management,
Ethics and Spirituality, 9(2), 35-45.

Wang, S., Liu, T., Nam, J., & Tan, L. (2020). Deep Semantic Feature
Learning for Software Defect Prediction. IEEE Transactions on
S o f t w a r e E n g i n e e r i n g , 4 6 , 1 2 6 7 - 1 2 9 3 .
https://doi.org/10.1109/TSE.2018.2877612.

Wang, Y., Kung, L., & Byrd, T. A. (2018). Big data analytics:
Understanding its capabilities and potential benefits for healthcare
organizations. Technological forecasting and social change, 126, 3-
13.
Westerman, G., Bonnet, D., & McAfee, A. (2014). Leading digital:
Turning technology into business transformation. Harvard Business
Press.

98Vol. XVII, No. 2; September 2024 - February 2025

Machine Learning Models for Software Defect Detection: A Strategic Management Approach

