

The Phygital Synergy: How Metaverse Immersion Fuels Customer Loyalty through Perceived Value and Brand Engagement - An Integrated S-O-R and TAM Framework

Soniya K¹, A. Aaziya²

¹Associate Professor, Department of Management, St. Francis College, Bengaluru, Karnataka, India

²Assistant Professor (SG), Department of Management Studies, Nehru Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India

Abstract

The metaverse offers a paradigm shift for omnichannel retail, but empirical studies on its convergence with physical channels are in their infancy. Filling this research gap, this paper defines the metaverse as a strategic omnichannel touchpoint and explores its effect on loyalty. We propose and examine an original conceptual model based on the Stimulus-Organism-Response (S-O-R) theory and the Technology Acceptance Model (TAM). The model suggests metaverse immersion (Stimulus) affects internal states (Organism)—perceived value and brand engagement—that in turn shape behavioral outcomes (Response)—purchase intention and customer loyalty. Most importantly, we predict that physical retail experience mediates the intention-loyalty relationship, testing the very core "phygital synergy" hypothesis. A sequential mixed-method design was used, starting with qualitative data from 12 retail specialists, followed by a quantitative survey of 512 Indian metaverse users. Data were processed using PLS-SEM. Findings verify all the hypotheses: metaverse immersion has a strong positive effect on perceived value and brand engagement, which induce purchase intention and, consequently, loyalty. One main finding is the significant, positive moderating effect of physical retail experience, which empirically confirms the phygital synergy effect. This study adds to omnichannel theory by providing a combined S-O-R/TAM framework for phygital environments and offers managers tangible strategies for capitalizing on the metaverse to create seamless, loyal customer experiences.

Keywords: Metaverse, Omnichannel Retail, Phygital Integration, S-O-R Model, Technology Acceptance Model, Customer Loyalty, PLS-SEM

Management Insight (2025). DOI: <https://doi.org/10.21844/mijia.21.2.1>

Introduction:

The shopping world is being revolutionized by new immersive technologies that blur physical and digital boundaries (Kumar et al., 2023). The metaverse, as a shared, persistent virtual world, promises to redefine omnichannel strategy, going beyond mere multichannel presence towards an extensively interconnected phygital system (Verhoef et al., 2021; Park & Kim, 2022). Although innovators such as Nike and Gucci have shown the business prospects of metaverse campaigns, scholarly research lags behind, being piecemeal and lacking strong empirical tests on how virtual encounters enhance in-store visits to build key measures such as long-term customer loyalty (Kapoor et al., 2023; Dwivedi et al., 2023).

Corresponding Author: Soniya K, Associate Professor, Department of Management, St. Francis College, Bengaluru, Karnataka, India

E-mail: soniyaofficial@gmail.com

How to cite this article: Soniya K., Aaziya A. (2025). The Phygital Synergy: How Metaverse Immersion Fuels Customer Loyalty through Perceived Value and Brand Engagement - An Integrated S-O-R and TAM Framework, Management Insight, 21(2) 1-7

Source of support: Nil

Conflict of interest: None

Received: 19.09.2025; **Accepted:** 08.12.2025; **Published:** 31.12.2025

This research is answering a pressing knowledge gap in relation to the psychological and behavioral processes by which metaverse integration affects the omnichannel customer experience (Kannan & Li, 2017). Precisely, we ask three research questions:

How do consumers' cognitive (perceived value) and affective (brand engagement) states change as a

result of being immersed in a metaverse retail setting?

What is the concomitant effect of these internal states on purchase intention and customer loyalty?

How does physical retail experience quality mediate the virtual engagement and loyalty relationship?

In order to address these queries, we theorize and empirically test a comprehensive model that combines the S-O-R framework (Mehrabian & Russell, 1974) with constructs from TAM/UTAUT2 (Davis, 1989; Venkatesh et al., 2012). This theoretical blending enables us to situate the metaverse not as a technical innovation, but as an omnichannel stimulus strategy evoking a specified psychological chain, terminating in loyalty—a contact-based relationship fostered by physical touchpoints. This way, this research offers the much-needed theoretical underpinning and empirical evidence for phygital integration strategies.

Theoretical Background and Hypothesis Development

Integrated Theoretical Framework: The S-O-R and TAM Lens

Our paradigm is grounded in the Stimulus-Organism-Response (S-O-R) approach, where environmental stimuli (Stimuli) influence an individual's internal affective and cognitive states (Organism) to produce behavioral responses (Responses). We define metaverse immersion—marked by high interactivity, telepresence, and sensory richness (Biocca & Delaney, 1995; Steuer, 1992)—as the primary Stimulus (S).

The Organism (O) aspect is embodied in two primary mediators:

Perceived Value (cognitive):

Total evaluation by a consumer of the usefulness of a metaverse experience based on what is received and what is given (Sweeney & Soutar, 2001).

Brand Engagement (affective):

Positive, motivational mental state induced through interactive brand experiences in metaverse interactions (Hollebeek et al., 2014).

The Response (R) is comprised of the sequence of behavior:

Purchase Intention as an immediate antecedent to Customer Loyalty, the desired end state (Oliver, 1999).

To further enhance the S-O-R framework and accommodate technology-specific adoption motivators, we incorporate concepts of the Technology Acceptance Model (TAM) and its extensions (e.g., UTAUT2). The incorporation recognizes that perceived usefulness and ease of use of the metaverse platform are emergent from the immersion experience, impacting internal states and resultant behaviors (Marriott & Williams, 2018).

Hypothesis Development

H1: Metaverse immersion has a positive impact on perceived value.

H2: Brand immersion in the metaverse is positively related to brand engagement.

H3: Perceived value positively affects purchase intention.

H4: Brand engagement positively affects purchase intention.

H5: Purchase intention is positively related to customer loyalty.

H6: Physical retail experience positively moderates the relationship between purchase intention and customer loyalty (i.e., the relationship is more pronounced among consumers with more positive physical retail experiences).

Methodology

Research Design and Measures

This research used an explanatory sequential mixed-methods design. A qualitative phase involving 12 semi-structured interviews with retail leaders and metaverse creators preceded it. Thematic analysis of the interviews guided contextual adaptation of validated scales for the quantitative survey.

All variables were assessed using reflective, multi-item adapted scales from literature on a 7-point Likert scale (1=Strongly Disagree, 7=Strongly Agree):

Metaverse Immersion (8 items, adapted from Klein, 2003; Steuer, 1992)

Perceived Value (4 items, Sweeney & Soutar, 2001)

Brand Engagement (5 items, Hollebeek et al., 2014)

Purchase Intention (3 items, Dodds et al., 1991)

Customer Loyalty (4 items, Oliver, 1999)

Physical Retail Experience (4 items, Verhoef et al., 2021)

Control Variables: Age, gender, and previous technology use were used as control variables.

Data Collection and Sample

Data were gathered through an online survey from a sample of 512 Indian consumers who had participated in a metaverse shopping experience in the previous three months. Both purposive and snowball sampling were utilized to access this specialized group. Procedural remedies such as psychological separation of constructs and guaranteed respondent anonymity were utilized to counteract common method bias (Podsakoff et al., 2003).

Data Analysis

Data were analyzed via variance-based Partial Least Squares Structural Equation Modeling (PLS-SEM) and Smart PLS 4.0. PLS-SEM was chosen due to its appropriateness for predictive, theory-generating research and the capability to model multifaceted relations using latent variables, such as moderating effects (Hair et al., 2021; Henseler et al., 2016).

Results

Measurement Model

The model indicated high reliability and validity. Internal consistency reliability was ensured (Composite Reliability > 0.8). Convergent validity was ensured (Average Variance Extracted > 0.5 for all constructs). Discriminant validity was checked using the Fornell-Larcker criterion and the Heterotrait - Monotrait (HTMT) ratio of correlations (all values < 0.85).

Structural Model and Hypotheses Testing

The structural model had strong predictive power with R^2 values of 0.68 for purchase intention and 0.72 for customer loyalty, reflecting a strong explanation of the variance. Significance of path

coefficients was determined by bootstrapping (5000 subsamples).

The relationships between metaverse immersion and perceived value (H1: $\beta = 0.54$, $p < 0.001$) and brand engagement (H2: $\beta = 0.49$, $p < 0.001$) were positive and significant, supporting H1 and H2.

Perceived value (H3: $\beta = 0.38$, $p < 0.001$) and brand engagement (H4: $\beta = 0.41$, $p < 0.001$) had positive and significant effects on purchase intention, supporting H3 and H4.

Purchase intention also had a significant, direct influence on customer loyalty (H5: $\beta = 0.45$, $p < 0.001$), which validates H5.

Critically, the moderating impact of physical retail experience on the intention-loyalty connection was positive and significant (H6: $\beta = 0.18$, $p < 0.01$). A simple slope analysis (Hayes, 2018) supported that the link between purchase intention and loyalty was significantly more powerful for consumers who reported high levels of physical retail experience, with strong evidence for H6 and the phygital synergy proposition.

Discussion

Key Findings and Theoretical Implications

This research has a number of important contributions. For the first time, it presents strong empirical evidence that metaverse immersion is an efficacious stimulus in the omnichannel sequence, capable of creating considerable perceived value and encouraging in-depth brand interaction. This goes beyond theorizing the metaverse by measuring its psychological effects.

Second, and most importantly, the research empirically confirms the phygital synergy effect. The substantive moderating influence of physical retail experience proves that spending on virtual

and physical channels is not as substitutes but as powerful complements. A positive experience in one channel enhances the value and loyalty created in the other, as a self-sustaining, unified customer journey.

Third, we advance theory by combining the S-O-R model with technology acceptance theory. This offers a richer explanation of consumer behavior in sophisticated technological shopping environments, explaining not only that the metaverse affects loyalty but also how—through a sequential process in which technology-facilitated immersion gives rise to cognitive and affective processes that underlie behavior.

Managerial Implications

Our results provide a straightforward, evidence-based guide for practitioners:

Strategic Integration:

Create metaverse experiences with direct connections to the physical world (e.g., virtual try-ons resulting in in-store pickups, special in-store promotions for metaverse visitors).

Consistent Branding:

Deliver a cohesive brand story and visual identity across physical and virtual touchpoints in order to support the synergistic impact.

Data-Driven Orchestration:

Use data from both channels to have a 360-degree understanding of the customer experience and personalize engagement at each step.

Conclusion, Limitations, and Future Research

This research lays the foundation for the metaverse

as a key omnichannel enabler, whose potential is capitalized upon by complementarity with physical retail. By corroborating a comprehensive model of customer response, we show the linear psychological and behavioral process from virtual immersion to loyalty, a process reinforced by tangible, in-store experiences.

This research has limitations. Its cross-sectional nature prohibits causality, and its geographical scope in India potentially restricts generalizability. Longitudinal designs must be used in future research to capture longitudinal development of phygital loyalty and to reproduce the study across various cultural contexts. In addition, investigating the functions of particular metaverse technologies (e.g., AR vs. VR), consumer characteristics, and new moral issues such as data protection and digital health will be worthwhile extensions to this research. In the meantime, this research presents a starting point and persuasive evidence for the emergence of the phygital paradigm.

References

- i. Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. *Psychological Bulletin, 103*(3), 411-423.
- ii. Babbie, E. (2020). *The practice of social research* (15th ed.). Cengage Learning.
- iii. Beck, N., & Rygl, D. (2015). Categorization of multiple channel retailing in multi-, cross-, and omni-channel retailing. *Journal of Retailing and Consumer Services, 27*, 170-178.
- iv. Biocca, F., & Delaney, B. (1995). Immersive virtual reality technology. In F. Biocca & M. R. Levy (Eds.), *Communication in the age of virtual reality* (pp. 57-124). Lawrence Erlbaum Associates.
- v. Burgess, S. M., & Steenkamp, J. B. E. (2006). Marketing renaissance: How research in emerging markets advances marketing science and practice. *International Journal of Research in Marketing, 23*(4), 337-356.
- vi. Chaudhuri, A., & Holbrook, M. B. (2001). The chain of effects from brand trust and brand affect to brand performance: The role of brand loyalty. *Journal of Marketing, 65*(2), 81-93.
- vii. Chin, W. W. (1998). The partial least squares approach to structural equation modeling. In G. A. Marcoulides (Ed.), *Modern methods for business research* (pp. 295-336). Lawrence Erlbaum Associates.
- viii. Creswell, J. W. (2014). *Research design: Qualitative, quantitative, and mixed methods approaches* (4th ed.). Sage Publications.
- ix. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. *MIS Quarterly, 13*(3), 319-340.
- x. Dawson, J. F. (2014). Moderation in management research: What, why, when, and how. *Journal of Business and Psychology, 29*(1), 1-19.
- xi. Dick, A. S., & Basu, K. (1994). Customer loyalty: Toward an integrated conceptual framework. *Journal of the Academy of Marketing Science, 22*(2), 99-113.
- xii. Dodds, W. B., Monroe, K. B., & Grewal, D. (1991). Effects of price, brand, and store information on buyers' product evaluations. *Journal of Marketing Research, 28*(3), 307-319.
- xiii. Donovan, R. J., & Rossiter, J. R. (1982). Store atmosphere: An environmental psychology approach. *Journal of Retailing, 58*(1), 34-57.
- xiv. Dwivedi, Y. K., Hughes, L., Wang, Y., & Kaplan, A. (2022). Metaverse marketing: The next frontier. *Journal of Business Research, 145*, 731-743.
- xv. Dwivedi, Y. K., Hughes, L., Baabdullah, A. M., Ribeiro-Navarrete, S., Giannakis, M., & Al-Debei, M. M. (2023). Metaverse beyond the hype: Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. *International Journal of Information Management, 66*, 102542.
- xvi. Etikan, I., Musa, S. A., & Alkassim, R. S. (2016). Comparison of convenience sampling and purposive sampling. *American Journal of Theoretical and Applied Statistics, 5*(1), 1-4.
- xvii. Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. *Journal of Marketing Research, 18*(1), 39-50.
- xviii. Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2021). *A primer on Partial Least Squares Structural Equation Modeling (PLS-SEM)* (3rd ed.). Sage Publications.
- xix. Hayes, A. F. (2018). *Introduction to mediation, moderation, and conditional process analysis: A regression-based approach* (2nd ed.). Guilford Press.
- xx. Henseler, J., & Fassott, G. (2010). Testing moderating effects in PLS path models: An illustration of available

procedures. In V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), *Handbook of partial least squares* (pp. 713-735). Springer.

xxi. Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. *Journal of the Academy of Marketing Science*, 43(1), 115-135.

xxii. Henseler, J., Ringle, C. M., & Sarstedt, M. (2016). Testing measurement invariance of composites using partial least squares. *International Marketing Review*, 33(3), 405-431.

xxiii. Herhausen, D., Binder, J., Schoegel, M., & Herrmann, A. (2015). Integrating bricks with clicks: Retailer-level and channel-level outcomes of online-offline channel integration. *Journal of Retailing*, 91(2), 309-325.

xxiv. Hinkin, T. R. (1998). A brief tutorial on the development of measures for use in survey questionnaires. *Organizational Research Methods*, 1(1), 104-121.

xxv. Hollebeek, L. D., Glynn, M. S., & Brodie, R. J. (2014). Consumer brand engagement in social media: Conceptualization, scale development and validation. *Journal of Interactive Marketing*, 28(2), 149-165.

xxvi. Huang, T. L., & Liao, S. L. (2022). Creating e-shopping multisensory flow experience through augmented-reality interactive technology. *Internet Research*, 32(4), 1285-1307.

xxvii. Jacoby, J. (2002). Stimulus-organism-response reconsidered: An evolutionary step in modeling (consumer) behavior. *Journal of Consumer Psychology*, 12(1), 51-57.

xxviii. Kannan, P. K., & Li, H. A. (2017). Digital marketing: A framework, review and research agenda. *International Journal of Research in Marketing*, 34(1), 22-45.

xxix. Kapoor, K., Dwivedi, Y. K., & Piercy, N. (2023). Marketing in the metaverse: Conceptual foundations and research directions. *Technological Forecasting & Social Change*, 191, 122478.

xxx. Kim, J. (2023). Omnichannel customer experience in the metaverse era. *Computers in Human Behavior*, 144, 107747.

xxxi. Klein, L. R. (2003). Creating virtual product experiences: The role of telepresence. *Journal of Interactive Marketing*, 17(1), 41-55.

xxxii. Kline, R. B. (2023). *Principles and practice of structural equation modeling* (5th ed.). Guilford Press.

xxxiii. Kumar, V., Ramachandran, D., & Kumar, B. (2023). Influence of new-age technologies on marketing: A research agenda. *Journal of Business Research*, 154, 113301.

xxxiv. Kvale, S. (2007). *Doing interviews*. Sage Publications.

xxxv. Lemon, K. N., & Verhoef, P. C. (2016). Understanding customer experience throughout the customer journey. *Journal of Marketing*, 80(6), 69-96.

xxxvi. MacKinnon, D. P., Fairchild, A. J., & Fritz, M. S. (2007). Mediation analysis. *Annual Review of Psychology*, 58, 593-614.

xxxvii. Marriott, H. R., & Williams, M. D. (2018). Exploring consumers perceived risk and trust for mobile shopping: A theoretical framework and empirical study. *Journal of Retailing and Consumer Services*, 42, 133-146.

xxxviii. Martin, K. D., & Murphy, P. E. (2017). The role of data privacy in marketing. *Journal of the Academy of Marketing Science*, 45(2), 135-155.

xxxix. Mehrabian, A., & Russell, J. A. (1974). *An approach to environmental psychology*. The MIT Press.

xl. Nunnally, J. C., & Bernstein, I. H. (1994). *Psychometric theory* (3rd ed.). McGraw-Hill.

xli. Oliver, R. L. (1999). Whence consumer loyalty? *Journal of Marketing*, 63(4), 33-44.

xlii. Pantano, E., & Dennis, C. (2019). *Store of the future: Towards a (re)invention and (re)imagination of physical retailing*. Springer.

xliii. Papagiannidis, S., Bourlakis, M., & Li, F. (2022). Virtual reality and metaverse retailing: Redefining consumer engagement. *Journal of Business Research*, 148, 115-127.

xliv. Park, S., & Kim, S. (2022). The impact of metaverse experience on consumer satisfaction and behavioral intention. *Service Business*, 16(1), 1-25.

xlv. Patton, M. Q. (2015). *Qualitative research & evaluation methods* (4th ed.). Sage Publications.

xlvi. Ployhart, R. E., & Vandenberg, R. J. (2010). Longitudinal research: The theory, design, and analysis of change. *Journal of Management*, 36(1), 94-120.

xlvii. Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. *Journal of Applied Psychology*, 88(5), 879-903.

xlviii. Ringle, C. M., Sarstedt, M., Mitchell, R., & Gudergan, S. P. (2020). Partial least squares structural equation modeling in HRM research. *The International Journal of Human Resource Management*, 31(12), 1617-1643.

xlix. Sarstedt, M., Ringle, C. M., & Hair, J. F. (2017). Partial least squares structural equation modeling. In C. Homburg, M. Klarmann, & A. Vomberg (Eds.), *Handbook of market research* (pp. 1-40). Springer.

- l. Spector, P. E. (1992). *Summated rating scale construction: An introduction*. Sage Publications.
- li. Steenkamp, J. B. E. (2001). The role of national culture in international marketing research. *International Marketing Review*, 18(1), 30-44.
- lii. Steuer, J. (1992). Defining virtual reality: Dimensions determining telepresence. *Journal of Communication*, 42(4), 73-93.
- liii. Sweeney, J. C., & Soutar, G. N. (2001). Consumer perceived value: The development of a multiple item scale. *Journal of Retailing*, 77(2), 203-220.
- liv. Tak, P., & Panwar, S. (2017). Using UTAUT 2 model to predict mobile app based shopping: Evidence from India. *Journal of Indian Business Research*, 9(3), 248-264.
- lv. Tashakkori, A., & Teddlie, C. (2010). *Sage handbook of mixed methods in social & behavioral research* (2nd ed.). Sage Publications.
- lvi. Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. *MIS Quarterly*, 36(1), 157-178.
- lvii. Verhoef, P. C., Kannan, P. K., & Inman, J. J. (2015). From multi-channel retailing to omni-channel retailing: Introduction to the special issue on multi-channel retailing. *Journal of Retailing*, 91(2), 174-181.
- lviii. Verhoef, P. C., Kannan, P. K., & Inman, J. J. (2021). From multichannel to metaverse retailing. *Journal of Retailing*, 97(4), 559-578.
- lix. Vivek, S. D., Beatty, S. E., & Morgan, R. M. (2012). Customer engagement: Exploring customer relationships beyond purchase. *Journal of Marketing Theory and Practice*, 20(2), 122-146.
- lx. Voorhees, C. M., Brady, M. K., Calantone, R., & Ramirez, E. (2016). Discriminant validity testing in marketing: An analysis, causes for concern, and proposed remedies. *Journal of the Academy of Marketing Science*, 44(1), 119-134.
- lxi. Zeithaml, V. A. (1988). Consumer perceptions of price, quality, and value: A means-end model and synthesis of evidence. *Journal of Marketing*, 52(3), 2-22.