Managing the Era of Multi-Cultural Leadership

M. Rahul

Assistant Professor, Mittal School of Business, Lovely Professional University, Phagwara, Punjab, India Email: rahul.18612@lpu.co.in **R. Ganesan** Associate Professor, P.G. & Research Department of Commerce, D.G.Vaishnav College, Chennai, India

Abstract

Leaders in the global arena are the one who face the challenges never seen before, while coordinating work and managing relationship between team members coming from varied ethnic groups. Globalization has undoubtedly opened up endless growth opportunities for both, businesses and individuals, by collaborating with each other, but with certain inherent challenges. These challenges are the difference in the cultural background of the team members, which gets predominantly reflected in their behavior at workplace too. The cultural differences exist primarily due to differences in shared values, which form the basis for difference in perception and practices of decision making by an individual (Hofstede, 1980).

Juana Bordas has rightly described that any business that fails to adapt their leadership style aligning with multi-cultural approach will find it difficult to thrive in a more colorful world. Leadership style has witnessed various facets of changing work environment that has demanded from leaders to modify their approach to adapt along and be effective and survive in the ever-changing environment of business (Bordas, 2007).

A cross-culture leader plays a significant role in knitting the diverse workforce into an efficient team; which requires a leader to very well understand the various dimensions of culture. This understanding of the leader enables him to learn about blending of leadership styles to address the challenges of such work environment. This paper is an extended work on 'Leadership in Cross-Cultural Environment – A Comparison of Asian and Non-Asian Managers' (Rahul & Ganesan, 2015). The extended research study has identified that enhanced work experience of cross-culture leaders enables them in effective team management, than the rise in designation, as it results in creation of hierarchical distance between the leaders and subordinates.

Keywords: Cross-culture leadership, Leadership (Challenges and Approaches)

Background to the Study

A culture is formed by combination of varied practices based on the history, traditions, economy and technology of a society. This helps any individual to develop an understanding about his/her cultural environment and associate certain meaning to the interactions they encounter with rest of the world. Society is more or less like an abstract painting that has common colors, but different people develop different views and derivations depending upon their cultural view point. Such interpretation of individuals might appear to be irrational and contradicting with the interpretation held sacred by us. Present day leaders face the challenge of understanding the multicultural environment, which forces them to become aware about the differences between different cultural practices to manage the diversified workforce efficiently.

Leaders in the global arena are the one who face the challenges never seen before, while coordinating work and managing relationship between team members coming from varied ethnic groups. Globalization has undoubtedly opened up endless growth opportunities for both, businesses and individuals, by collaborating with each other, but with certain inherent challenges. These challenges are the difference in the cultural background of the team members, which gets predominantly reflected in their behavior at workplace too. The cultural differences exist primarily due to differences in shared values, which form the basis for difference in perception and practices of decision making by an individual (Hofstede, 1980).

Juana Bordas has rightly described that any business that fails to adapt their leadership style aligning with multi-cultural approach will find it difficult to thrive in a more colorful world. Leadership style has witnessed various facets of changing work environment that has demanded from leaders to modify their approach to adapt along and be effective and survive in the everchanging environment of business (Bordas, 2007). A cross-culture leader plays a significant role in knitting the diverse workforce into an efficient team; which requires a leader to very well understand the various dimensions of culture. This understanding of the leader enables him to learn about blending of leadership styles to address the challenges of such work environment.

This paper is an extended work of our previous paper on 'Leadership in Cross-Cultural Environment – A Comparison of Asian and Non-Asian Managers' (Rahul & Ganesan, 2015). The extended research study has identified that enhanced work experience of cross-culture leaders

Research Problem

Cross-cultural leadership studies so far are yet to make an attempt to hold a comparative study between Asian and Western managers in context of understanding the challenges faced by multiculture leaders and what approaches would lead to managing the same efficiently. The study also tries to identify the demographic factors that enable better observation of cross-cultural leadership challenges.

Objectives of the Study

- To group leaders on basis of their challenge perception, examine their profile and the influence of demographic factors on challenge perception.
- To group leaders on basis of their approach perception, examine their profile and the influence of demographic factors on their approach perception.

Research Methodology

The study being exploratory, an instrument is devised for collection of data. The instrument is designed keeping in view the objectives of the study and the same has been pre-tested and modified wherever required. The respondents for the study are not selected from any specific region or country, as this may result into the commonness of manager's collective perception. The samples for the study are selected on pre-determined condition that a manager should be exposed to managing a team constituted of members coming from different countries/cultures. The samples

have been collected using snowball technique, as identifying cross-culture leaders in isolation was extremely difficult. The total population of crossculture managers is difficult to determine, hence from the infinite population, the samples have been received from managers of 33 different countries. Total of 479 duly filled and complete questionnaires have been used for the study.

Data Interpretation

The demographic distribution of the respondents has been analyzed in detail to identify the mix of respondents.

PROFILES			GROUPI	NGS			TOTAL
Place of Work Frequency & Percent	Africa 3 (0.6)	Asia 289 (60.3)	Australia 8 (1.7)	Europe 23 (4.8)	N.America 125 (26.1)	S.America 31 (6.5)	479 (100)
Gender Frequency & Percent	Male 335 (69.9)	Female 144 (30.1)					479 (100)
Age Frequency & Percent	25 - 35 363 (75.8)	35 - 50 109 (22.8)	Above 50 7 (1.5)				479 (100)
Nationality Frequency & Percent	Africa 5 (1.0)	Asia 371 (77.5)	Australia 7 (1.5)	Europe 15 (3.1)	N.America 56 (11.7)	S.America 25 (5.2)	479 (100)
Education Frequency & Percent	Graduate 65 (13.6)	Master Degree 273 (57)	Professional Degree 141 (29.4)				479 (100)
Marital Status Frequency & Percent	Married 261 (54.5)	Unmarried 218 (45.5)					479 (100)
Designation Frequency & Percent	Junior Manager 263 (54.9)	Middle Manager 166 (34.7)	Senior Manager 50 (10.4)				479 (100)
Work Experience Frequency & Percent	< 1 YR 9 (1.9)	1 – 3 YRS 31 (6.5)	3 – 7 YRS 164 (34.2)	> 7 YRS 275 (57.4)			479 (100)

Table 1. Multicultural Managers Demographic Details

The above table 1 brings out descriptive analysis of the data relating to the demographic characters of the respondents in the first column indicates the variable name and the subsequent columns are components of that variable. The challenge factors and approach factors as identified in the previous paper have been further applied for data analysis, keeping in mind the objectives of the study. Note: The percentages are within parenthesis

Challenge Factors

Factor 1 – Influence of Culture on Individual Interpretation

Factor 2 – Discrimination on basis of Personal Factors (Religion, Ethnicity, Age, Gender) Factor 3 – Language and Accent Problems Factor 4 – Religion and Nationality Bias Factor 5 – Ethnicity and Gender Bias

Approach Factors

Factor 1 – Developing systems through Norms and Policies

Factor 2 – Power Distance Practices and Motivation

Factor 3-Encouraging Individual Participation

Factor 4 – Respecting Individuality and Trust Building

Identification of Groups of Managers with Homogeneous Challenge and Approach Perceptions and Examination of Their Demographic Profile

People in the organizations encounter hundreds of

events, practices and procedures and they perceive these events in related sets. This leads people to attach meaning to or make sense of clusters of psychologically related events. In this part of the study analysis has been carried out to identify the groups of managers with similar perception, and then examine the characteristics of these groups. The objective is to explore the possibility of a common basis (demographic or organizational) on which these groups might have been formed. Here, the clusters have been divided on the basis of Challenges that are faced by multicultural managers and their Approaches to these challenges. Both set of clusters shall be studied separately.

(CHALLENGES)

Table 2. Final Cluster Centers

Factors	Factor Means		Cluster Means	
		Cluster 1	Cluster 2	Cluster 3
Ch_Fac1	26.5616	29.24	19.42	23.49
Ch_Fac2	16.3661	16.86	18.14	13.63
Ch_Fac3	7.3215	7.62	6.62	6.90
Ch_Fac4	6.8100	7.04	6.61	6.29
Ch_Fac5	11.0877	11.42	10.88	10.26

Table 3. Number of Cases in each Cluster

	1	305.000
Cluster	2	69.000
	3	105.000
Valid	479.000	
Missing	.000	

	Wilks' Lambda	F	df1	df2	Sig.
Ch_Fac1	.269	647.633	2	476	.000
Ch_Fac2	.552	192.990	2	476	.000
Ch_Fac3	.885	30.827	2	476	.000
Ch_Fac4	.839	45.789	2	476	.000
Ch_Fac5	.734	86.080	2	476	.000

Table 4. Tests of Equality of Group Means

Table 5. Eigenvalues

Function	Eigenvalue	% of Variance	Cumulative %	Canonical Correlation
1	3.099a	75.1	75.1	.870
2	1.028a	24.9	100.0	.712

a. First 2 canonical discriminant functions were used in the analysis.

Table 6. Wilks' Lambda

Test of Function(s)	Wilks' Lambda	Chi-square	df	Sig.
1 through 2	.120	1003.828	10	.000
2	.493	335.082	4	.000

Collective challenges have been identified using a series of analysis that clustered individuals on the basis of profile similarity on the 5 challenge dimensions. Three clusters have been identified. Each cluster's mean score with regard to each of 5 factors is presented in the table 2. Table 3 presents the strength of each cluster. Cluster 1 has 305 members, cluster 2 has 69 and cluster 3 has 105 members. An analysis of one way variance performed to test the equality of group means has brought out the fact p is less than .01 in respect of all the factors (table 4), i.e., clustering exercise has identified three separate clusters which are not related in respect even one factor out of 5 factors that formed the basis for clustering. This is proved by the statistics in the table that the minimum and maximum of F being 30.82 and 647 and the

maximum p value being .000.

Table 5 and table 6 prove that the cluster members are homogeneous and clusters are heterogeneous with each other with regard to perception of each factor that constitutes challenges. The canonical correlation .870 establishes the correlation of perception within each cluster and fisher's discriminant function's p value less than .001 indicates that clusters are heterogeneous with each other and homogeneous within.

Examining the scores of cluster 1, the mean scores of all the factors are much above the mean score for the corresponding factors in the sample. Whereas the mean scores of the factors of other two clusters do not show any definite pattern. As it can be seen

from the table, factors scores of cluster 2 are below the mean factor score except for factor 2. The mean scores of factors of cluster 3 are also below the mean score of factors in the sample. Cluster 1 therefore emerges as dominant cluster, the members of which very strongly perceive the

leadership challenges of multicultural environment. Moreover it is interesting to note that the factor scores of cluster number one are above the average score. The average scores of the factors with number of variables in the brackets are given below in the table 7.

Factor	Number of Variables	Maximum Score	Average Score
Factor 1	7	35 (7*5)	17.5
Factor 2	4	20	10
Factor 3	2	10	5
Factor 4	2	10	5
Factor 5	3	15	7.5

 Table 7. Average Score of each factor created by the PCA

The above table along with table of Final Cluster Centers makes it very clear that cluster 1, 2 and 3 have factor scores that are above the average score (average score is obtained by multiplying the maximum possible score for a factor with the number of variables in that factor, divided by two). In the case of cluster 2 though the factor scores are above the average scores, it is still lower than the factor scores of cluster 3. Thus the managers of cluster 2 may be categorized as managers who are 'moderately challenged' by multicultural environment. Thus of the three clusters, cluster 1 consists of managers who feel 'very strongly challenged' by the multicultural environment and cluster 3 comprise of managers who find themselves 'strongly challenged' as a multicultural leader.

Looking at the clusters from membership point of view cluster 1 has 305 members and cluster 3 has 105 members. Cluster 2, has the least representation that is, only 69. Thus the dominant group is the members of cluster 3 which is the strongly challenged category. Cluster 1 and 3 together constitute around 86% of the sample leading to a conclusion that the leadership challenges taken into consideration for this study are strongly felt by these multi-culture managers.

Factors	Factor Means	Cluster Means	
		Cluster 1	Cluster 2
Ap_Fac1	20.5240	17.47	21.52
Ap_Fac2	17.0919	15.59	17.58
Ap_Fac3	12.0459	10.14	12.67
Ap_Fac4	12.3716	11.25	12.74

(APPROACHES) Table 8. Final Cluster Centers

Table 9. Number of Cases in each Cluster

Cluster	1	118.000
	2	361.000
Valid	479.000	
Missing	.000	

Table 10. Tests of Equality of Group Means

	Wilks' Lambda	F	df1	df2	Sig.
Ap_Fac1	.392	738.678	1	477	.000
Ap_Fac2	.724	181.469	1	477	.000
Ap_Fac3	.642	265.747	1	477	.000
Ap_Fac4	.747	161.710	1	477	.000

Table 11. Eigenvalues

Function	Eigenvalue	% of Variance	Cumulative %	Canonical Correlation
1	3.449a	100.0	100.0	.880

a. First 1 canonical discriminant functions were used in the analysis.

Table 12. Wilks' Lambda

Test of Function(s)	Wilks' Lambda	Chi-square	df	Sig.
1	.225	708.985	4	.000

Here again collective approaches have been identified using a series of analysis that clustered respondents on the basis of profile similarity on the 4 approach dimensions. Two clusters have been identified. Each cluster's mean score with regard to each of 4 factors is presented in the table 8. Table 9 presents the strength of each cluster. Cluster 1 has 118 members and cluster 2 has 361 members. Similar to that of challenges, an analysis of one way variance performed to test the equality of group means, has brought out the fact p is less than .01 in respect of all the factors (table 10).

Clustering exercise has identified 2 separate clusters which are not related in respect even one factor out of 4 factors that formed the basis for clustering. This is provided by the statistics in the table that the minimum and maximum of F being 161.71 and 738.68 and the maximum p vale being .000. Table 11 and table 12 prove that the cluster members are homogeneous and clusters are heterogeneous with each other with regard to

perception of each factor that constitutes the approaches. The canonical correlation .880 establishes the correlation of perception within each cluster and fisher's discriminant function's p value < .001 indicates that clusters are heterogeneous with each other and homogeneous within.

On examination of the cluster scores, cluster 2 clearly shows the mean scores being above the factor mean scores without any variation in individual factor level scores. Cluster 2 therefore emerges as the dominant cluster, the members of which perceive the listed approaches favorably for addressing the challenges of multicultural environment.

It is interesting to note that the factor scores of cluster two are above the average score. The average scores of the factors with number of variables in the brackets are given below in the table 13.

Factor	Number of Variables	Maximum Score	Average Score
Factor 1	5	25 (5*5)	12.5
Factor 2	4	20	10
Factor 3	3	15	7.5
Factor 4	3	15	7.5

 Table 13. Average Score of each factor created by the PCA

In the case of cluster one (table 8) the cluster scores are below the means scores of the factor means. On comparing with average scores it clearly shows that the cluster scores are higher than the average scores. This helps to understand that members of cluster 1 though not dominant, but even they perceive similar approach elements in the given work environment. Members of cluster 2 perceive the given approaches as 'strongly accepted resolution'. Even in case of cluster 1 the members perceive the approaches favorably and hence their perception can be taken as 'moderately accepted resolution'.

For the purpose of further analysis the clusters will be named, both for challenges and approaches, individually, as under;

Challenge Clusters

CLUSTER I–VSC (Very Strongly Challenged) CLUSTER II–SC (Strongly Challenged) CLUSTER III–MC (Moderately Challenged)

Approach Clusters

CLUSTER I – MAR (Moderately Accepted Resolution) CLUSTER II – SAR (Strongly Accepted Resolution)

The Demographic Profile of Challenge Clusters

Cluster	Frequency			Percent		
	Male	Female	TOTAL	Male	Female	TOTAL
VSC	208	91	299	69.6	30.4	100
SC	63	26	89	70.8	29.2	100
MC	64	27	91	70.3	29.7	100

Table 14. Gender

The ratio of male respondents is twice the number of female respondents in the cluster. The contingency analysis revealed a χ^2 value 0.057 and a p < .05, indicating no significant association between the clusters and the variable gender.

Cluster		Frequ	iency		Percent			
	25-35	35-50	>50	TOTAL	25-35	35-50	>50	TOTAL
VSC	235	62	2	299	78.6	20.7	0.7	100
SC	63	24	2	89	70.8	27.0	2.2	100
МС	65	23	3	91	71.4	25.3	3.3	100

Table 15. Age

All age groups have representation in all the three clusters and the proportions is almost same as that

of the sample. The contingency analysis resulted in a χ^2 value of 6.075 and p = 0.194.

Cluster	Frequency				Percent			
	Graduate	Master Degree	Prof. Degree	TOTAL	Graduate	Master Degree	Prof. Degree	TOTAL
VSC	25	191	83	299	8.4	63.9	27.8	100
SC	24	38	27	89	27.0	42.7	30.3	100
MC	16	44	31	91	17.6	48.4	34.1	100

Table 16. Education

All three clusters have managers with master degree as majority in them which is followed by professional degree holders. The χ^2 value of 26.673

establishes a strong association between the variables compared as the p = 0.000.

Cluster		Frequency		Percent			
	Married	Unmarried	TOTAL	Married	Unmarried	TOTAL	
VSC	157	142	299	52.5	47.5	100	
SC	49	40	89	55.1	44.9	100	
MC	55	36	91	60.4	39.6	100	

Table 17. Marital Status

The clusters have a balanced representation from both married and unmarried multi-culture managers. There is no significant association between the clusters and marital status, which is proved by the χ^2 value of 1.784 and p = 0.410.

Cluster		Frequ	iency		Percent			
	Junior	Middle	Senior	TOTAL	Junior	Middle	Senior	TOTAL
VSC	184	97	18	299	61.5	32.4	6.0	100
SC	36	33	20	89	40.4	37.1	22.5	100
MC	43	36	12	91	47.3	39.6	13.2	100

Of all the three clusters the junior level managers constitute the majority. The representation from each level is proportionate with the sample. It is also interesting to note that more than 50% of the managers come under the first cluster that belongs to the junior cadre. The χ^2 value of 26.556 along with the p value being 0.000 establishes an association between designations and clusters.

Cluster	Frequency					Percent				
	<1 YR	1-3 YR	3-7 YR	>7 YRS	TOTAL	<1 YR	1-3 YR	3-7 YR	>7 YRS	TOTAL
VSC	4	11	101	183	299	1.3	3.7	33.8	61.2	100
SC	4	11	28	46	89	4.5	12.4	31.5	51.7	100
MC	1	9	35	46	91	1.1	9.9	38.5	50.5	100

 Table 19. Work Experience

The number of years of experience of each cluster demonstrates the same pattern as that of the sample. It is very interesting to note that majority of managers come under cluster 1 who have a work experience of 3-7 years or above 7 years. Work experience has a significant association with clusters as the χ^2 value is 16.712 with p value of 0.010.

Contingency Analysis Examining the Relationship between Demographic Variables and Challenge Clusters The above analysis is based on percentages and they cannot be accepted as conclusive evidence for the association between the variables. Thus, in order to have a better understanding of the relationship between demographic variables and challenge clusters; it was decided to conduct a contingency analysis to verify whether there is any significant association between clusters and their demographic characteristics. The following is the table of summary of contingency analysis:

Demographic Variables	χ2 value	df	P value	Inference
Gender and clusters	0.057	2	0.972	Not Significant
Age and clusters 6.075	4	0.194	Not Significant	
Education and clusters	26.673	4	0.000	Significant
Marital status and clusters	1.784	2	0.410	Not Significant
Designation and clusters	26.556	4	0.000	Significant
Work Exp. and clusters	16.712	6	0.010	Significant

Table 20.	Summary o	of Contingency	Analysis of	Demographic	Variables and	Challenge Clusters

From the table it can be ascertained that education, designation and work experience are the variables with regard to which there is significant variation between clusters as the p value in those cases are < .05. This variation suggests there is a significant association between these variables and the challenge perception. Such significance between variables like education, designation and work

experience alone is found due to the reason that in a multicultural setup, better the education and designation of the leader along with greater number of years of experience of functioning in such an environment helps them to have a close understanding of the challenges.

Influence of Demographic Variables on Challenge Clusters

Table 21. Multiple Regression results of Demographic variables on Challenge Cluster I (Very Strongly Challenged)

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
	Cluster Number of Case = 1 (Selected)			
2	.187	.035	.028	2.69327

Predictors: (Constant), Work Experience, Designation

Analysis of Variance

Model		Sum of Squares	df	Mean Square	F	Sig.
	Regression	77.782	2	38.891	5.361	.005
2	Residual	2147.101	296	7.254		
	Total	2224.883	298			

Dependent Variable: Aggregate Challenge Score

Selecting only cases for which Cluster Number of Case = 1 Predictors: (Constant), Work Experience, Designation

Table 22. Demographic variables significant influence on Challenge Clusters I (Very Strongly Challenged)

Model	Model		ed Coefficients	Standardized Coefficients	t	Sig.
		B Std. Error		Beta		
	(Constant)	70.749	.919		76.970	.000
2	Work Experience	.651	.249	.151	2.620	.009
	Designation	606	.260	135	-2.332	.020

Dependent Variable: Aggregate Challenge Score

Selecting only cases for which Cluster Number of Case = 1

The multiple regression has indicated a relationship between the set of predictor variables (work experience and designation) and challenge cluster I (F (2, 296) = 5.361, p = .005). However, this relationship is sparingly modest with a multiple correlation coefficient of R = .187. This result shows that, while the relationship between the predictor variables is statistically significant, only 3.5 percent (R^2 =.035) of the variance in our

measure of challenge cluster I may be explained by these two demographic variables. An examination of the relative contribution of each of the predictor variables as indexed by their regression coefficients (table), shows significant individual contribution for Work Experience (t (298) = 2.620, p = .009) and Designation (t (298) = -2.332, p =.020). On regressing challenge cluster II (strongly challenged) with the demographic variables, it was

found that there existed no relationship between the cluster and the predictor variables.

Table 23. Multiple Regression results of Demographic variables on Challenge Cluster III (Moderately Challenged)

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
	Cluster Number of Case = 3 (Selected)			
1	.324	.105	.095	4.16261

Predictors: (Constant), Work Experience

Analysis of Variance

Model		Sum of Squares	Df	Mean Square	F	Sig.
	Regression	180.619	1	180.619	10.424	.002
1	Residual	1542.129	89	17.327		
	Total	1722.747	90			

Dependent Variable: Aggregate Challenge Score

Selecting only cases for which Cluster Number of Case = 3 Predictors: (Constant), Work Experience

Table 24. Demographic variables significant influence on Challenge Cluster III (Moderately Challenged)

Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.
		В	Std. Error	Beta		
1	(Constant)	51.754	2.133		24.265	.000
	Work Experience	1.992	.617	.324	3.229	.002

Dependent Variable: Aggregate Challenge Score

Selecting only cases for which Cluster Number of Case = 3

The regression indicated a link between the predictor variable (work experience) and the challenge cluster III (F (1,89) = 10.424, p =.002). The link is relatively modest with a multiple correlation coefficient of R = .324. This result explains that, while the relationship between the predictor variable is statistically significant, only 10.5 percent (R^2 =.105) of the variance

in our measure of challenge cluster III may be explained by the demographic variable (work experience). Examination of the relative contribution of predictor variable as indexed by the regression coefficient (table), shows significant individual contribution for Work Experience (t (90) = 3.229, p = .002).

The Demographic Profile of Approach Clusters

Cluster

	MAR	86	32	118	72.9							
	SAR	249	112	361	69.0							
The ratio of	male-fema	le in the clu	ster is almos	st and	1 p = 0.42							
the same as	that of the s	sample. Her	e, the	ass	ociation							

Male

Frequency

Female

and p = 0.422, indicating no significant association between the clusters and the variable

TOTAL

100

100

Percent

Female

27.1

31.0

Table 26. Age	ble 26. A	ge
---------------	-----------	----

Table 25. Gender

TOTAL

Male

Cluster		Frequ	iency			Perc	ent	
	25-35	35-50	>50	TOTAL	25-35	35-50	>50	TOTAL
MAR	87	28	3	118	73.7	23.7	2.5	100
SAR	276	81	4	361	76.5	22.4	1.1	100

All age groups have representation in all the clusters in the proportion as that of the sample. It is interesting to note that majority of multi-culture

contingency analysis revealed a χ^2 value 0.645

managers come under the age group of 25-35 years. The contingency analysis resulted in a χ^2 value 1.404 and p = 0.496.

Cluster	Frequency					Per	cent	
	Graduate	Master Degree	Prof. Degree	TOTAL	Graduate	Master Degree	Prof. Degree	TOTAL
MAR	23	59	36	118	19.5	50.0	30.5	100
SAR	42	214	105	361	11.6	59.3	29.1	100

Both the clusters have master degree holders as the majority in them. The χ^2 value of 5.451 fails to

establish an association between the cluster and the variable education as the p = 0.066.

Table	28.	Marital	Status
-------	-----	---------	--------

Cluster		Frequency			Percent	
	Married	ried Unmarried TOTAL		Married	Unmarried	TOTAL
MAR	68	50	118	57.6	42.4	100
SAR 193		168	361	53.5	46.5	100

Of the two clusters, cluster 2 has a greater representation of both married and unmarried respondents. However, there is no association between the clusters and the marital status, which is proved by a χ^2 value of 0.622 and p = 0.430.

Cluster	Frequency					Perc	ent	
	Junior	Middle	Senior	TOTAL	Junior	Middle	Senior	TOTAL
MAR	54	49	15	118	45.8	41.5	12.7	100
SAR	209	117	35	361	57.9	34.7	10.4	100

Table 29. Designation

In both the clusters managers at junior level constitute the majority. The representation from each cadre is proportionate to the representation in the entire sample. The χ^2 value of 5.291 with p = 0.071 does not establish any association between the clusters and designation.

Cluster	Frequency					Percent				
	<1 YR	1-3 YR	3-7 YR	>7 YRS	TOTAL	<1 YR	1-3 YR	3-7 YR	>7 YRS	TOTAL
MAR	0	10	47	61	118	0.0	8.5	39.8	51.7	100
SAR	9	21	117	214	361	2.5	5.8	32.4	59.3	100

Table 30. Work Experience

The work experience of members of each cluster projects the same pattern as that of the sample. It is interesting to note that both the clusters have more than 50% of the managers who have an experience of more than 7 years. Anyhow, even here the variable work experience has no significant association with clusters as we get a p = 0.101 with a χ^2 value of 6.234.

Contingency Analysis Examining the Relationship between Demographic Variables and Approach Clusters

Similar to that of the examination of challenge clusters, the approach clusters are verified to better understand the relationship between demographic variables and approach clusters. For this purpose, again a contingency analysis is carried out, the summary of which is shown in the table below (Appendix).

Demographic Variables	χ2 value	df	P value	Inference
Gender and clusters	0.645	1	0.422	Not Significant
Age and clusters	1.404	2	0.496	Not Significant
Education and clusters	5.451	2	0.066	Not Significant
Marital status and clusters	0.622	1	0.430	Not Significant
Designation and clusters	5.291	2	0.071	Not Significant
Work experience and clusters	6.234	3	0.101	Not Significant

Table 31. Summary of Contingency Analysis of Demographic Variables and Approach Clusters

From the table it can be ascertained that none of the demographic variables have any association with the approach clusters as the p value is > .05 in all the cases. This variation suggests there is no significant association between these variables and clusters. Such non-significance of demographic factors with the approach perception of managers

could be clearly understood as the approach perception of managers purely depends on the type of challenge they face, and it has nothing to do with the demographic influence.

Influence of Demographic Variables on Approach Clusters

 Table 32. Multiple Regression results of Demographic variables on Approach Cluster I (Moderately Accepted Resolution)

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
	Cluster Number of Case = 1 (Selected)			
1	.217	.047	.039	2.96377

Predictors: (Constant), Education

Analysis of Variance

Model		Sum of Squares	Df	Mean Square	F	Sig.
1	Regression	50.146	1	50.146	5.709	.018
	Residual	1018.939	116	8.784		
	Total	1069.085	117			

Dependent Variable: Aggregate Approach Score

Selecting only cases for which Cluster Number of Case = 1 Predictors: (Constant), Education

Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.
		В	Std. Error	Beta		
1	(Constant)	56.410	.868		64.969	.000
	Education	933	.391	217	-2.389	.018

 Table 33. Demographic variables significant influence on Approach Cluster I (Moderately Accepted Resolution)

Dependent Variable: Aggregate Approach Score

Selecting only cases for which Cluster Number of Case = 1

The multiple linear regression here explains the link between the predictor variable (Education) and approach cluster I (F (1, 116) = 5.709, p = .018). This was a modest link with a multiple correlation coefficient of R = .217. This result explains that, while the relationship between the predictor variable is statistically significant, only 4.7 percent (R²=.047) of the variance in our measure of approach cluster I may be explained by the demographic variable (education). An examination of the relative contribution of the predictor variable as indexed by its regression coefficient (table), shows significant contribution for Education (t (117)=-2.389, p<.05).

On regressing approach cluster II (strongly accepted resolution) with the demographic variables, it was found that there existed no relationship between the cluster and the predictor variables.

Conclusion

This study helps us to understand that if any organization that wants to groom multi-cultural

team leaders, such individuals should be exposed to managing a culturally diverse team, with adequate skills to understand different cultures and develop unique norms and policies for the team. Such leaders with time move up in the organization ladder and would passively understand the challenges of handling the team, which might be an area of concern for the organization. This may demand for the leader to not only manage a multicultural team, but also, with their experience create second line leaders with similar, but improvised skills.

References

Bordas, J. (2007). *Salsa, Soul and Spirit: Leadership for a Multicultural Age* (2 ed.). San Francisco, CA: Berrett-Koehler Publishers.

Hofstede, G. (1980). *Culture's Consequences: International Differences in Work-Related Values*. Newbury Park, CA: Sage.

Rahul, M., & Ganesan, R. (2015). Leadership in Cross-Cultural Environment – A Comparison of Asian and Non-Asian Managers. *International Journal of Applied Business and Economic Research*, 13(1), 211-266.